美國食品及藥物管理局推動細胞治療新指引草案增加「傘狀試驗」加速細胞產品開發

  美國食品及藥物管理局(U.S. Food and Drug Administration, USFDA)於2021年9月30日發佈了最新細胞與基因治療指南草案,提出細胞治療可透過「傘狀試驗」(umbrella trial)機制,使細胞治療於同一個臨床試驗計畫之下,針對同一類疾病,可進行兩種以上細胞治療技術試驗,來加速細胞治療臨床開發速度。

  每個癌症病患實際上會有不同的基因變異,即使是相同類型的癌症也少有完全一樣的疾病機制(disease mechanism),因此,傳統臨床試驗僅能評估疾病機制較大族群的療效,但不同基因型的受試者對於相同藥物的反應可能有所差異,故難以預測病人是否將受益,亦或產生嚴重副作用,導致治癒效果不如預期。且現行的臨床治療規範中,即便醫師知道某標靶治療藥物對於特定基因體變異有效,但若此藥物未經USFDA核准於該腫瘤類型的適應症,醫師也無法使用。因此,透過傘狀實驗可提高細胞產品研發的靈活性與效率,並降低大量重複性工作,例如重複進行臨床前批次試驗、製程驗證、毒性測試…等等。若發生安全性疑慮,USFDA可針對個別研究組進行終止實驗,而不須將全部的臨床試驗計畫終止。

  台灣未來可考慮將傘狀試驗納入細胞治療臨床試驗設計模式,並參考USFDA審核方式與標準,以加速台灣細胞治療或精準醫療發展。

相關連結
※ 美國食品及藥物管理局推動細胞治療新指引草案增加「傘狀試驗」加速細胞產品開發, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8766&no=64&tp=1 (最後瀏覽日:2026/02/03)
引註此篇文章
你可能還會想看
2025年美國法院以「後設資料」作為審理AI深偽數位證據案件之重點

2025年9月Mendones v. Cushman and Wakefield, Inc.案(下稱Mendones案),面對生成式AI與深偽(deepfakes)對數位證據真實性的威脅,美國法院特別提到針對後設資料(metadata)的審查。 基於Mendones案原告提交9項涉嫌使用生成式AI的數位證據,其中證詞影片6A與6C影片具備「人物缺乏臉部表情、嘴型與聲音不相符,整體表現像機器人一樣」且「影片內容循環撥放」等AI深偽影片之典型特徵,法院懷疑原告舉證的數位證據為AI深偽影片。 因此,法院要求原告須提出該影片的後設資料,包含文件格式、創建/修改日期、文件類型、拍攝影片的快門速度等客觀資訊。 法院表示,原告提交的後設資料不可信,因為包含許多通常不會出現在後設資料的資訊(非典型的資訊),例如:著作權聲明。且法院進一步指出,許多非典型的資訊被放在不相關的欄位,例如:Google地圖的URL網址、電話號碼、GPS座標及地址等被放在「音樂類型」(musical genre)欄位內。因此法院懷疑,前述「非典型之後設資料」是被有存取文件與編輯權限的人添加的「後設資料」。 原告則主張,其透過iOS 12.5.5版本作業系統的Apple iPhone 6 Plus手機拍攝影片6A。法院指出,直到iOS 18版本作業系統,iPhone才推出可用於生成深偽影片的新功能「Apple Intelligence」相關技術,且該版本需要使用iPhone 15 Pro或更新的手機機型,因此法院發現技術上的矛盾。 法院認為,本案生成式AI影片已超越提交虛假引文(Fictitious Citations,即過往案例曾出現過律師提出AI虛構的判例之情況)的範疇。在訴訟中使用深偽證據,嚴重影響了法院的審理與公眾對司法的信任,並增加法院評估該證據是否為深偽之成本。因此,法院採取嚴厲的永久駁回訴訟(dismissed with prejudice),以表示對企圖以深偽資料為證據的行為持「零容忍」態度。 Mendones案展現法院審理AI深偽數位證據的細節,如「審視後設資料之內容準確、完整」為法院確認數位證據真實性的重要手段。 面對AI時代下數位證據的挑戰,我國司法院、法務部、臺灣高等檢察署、內政部警政署及法務部調查局共同推動之「司法聯盟鏈共同驗證平台」,以「b-JADE證明標章」結合區塊鏈技術。「b-JADE證明標章」確保鏈下管理數位資料原檔的機制,以及鏈上的「存證資料」包含「與數位原檔資料最終版本連結的『必要後設資料』」、雜湊值及時戳,如能妥適運用司法聯盟鏈進行證據「驗真」程序,將有助於強化數位信任。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

美國聯邦與州政府對於污染物排放超標免責立法之衝突。

  美國聯邦最高法院在2017年6月拒絕對聯邦法令-廠房之啟動,停工,與故障之許可證取得(Startup, Shutdown, Malfunction, SSM)底下之州際執行計畫(State Implementation Plans,SIPs)免責條款的上訴聽案,即各州對於SSM的污染物超標限制,無權力訂定免責條款。1聯邦法令SSM規定公司廠房等所有者或營運者需對於初始營運、日後關閉、中間故障等作業程序與維護措施做成報告以獲得並定期更新營業許可證,報告中需對於預測與計畫中的污染物排放與災難可能做說明,並以遵守聯邦法規對污染物排放相關規定為前提。2 聯邦政府當時以美國聯邦法規(Code of Federal Regulation)以及空氣清潔法案(The Clean Air Act)裡的國家周遭空氣品質標準(National Ambient Air Quality Standards) 為準則,授予各州訂定SIP的權限,因此才有各州多以促進經濟、展業發展為由而自行訂定免責條款的產生。   在原本的SSM機制下,計畫中的污染物超標可能適用各州的免責條款,而非計畫或預測中的污染物超標則會依是否有正當辯護,而可能被下禁治令。隨後,因美國前總統歐巴馬十分重視環境保護,而與美國環境保護總局(Environmental Protection Agency,EPA)頒佈新政策,下令各州把其SIP裡對於污染物超標的免責條款全部刪去。   這樣的大動作使各州政府與企業主十分不開心,便開啟了一連串與EPA的訴訟。2008年D.C.巡迴法院在Sierra Club v. EPA 3判定SSM期間內的違反污染污物排放限額不得有任何免責例外。2014年D.C.巡迴法院於Natural Resources Defense Council v. EPA 4更判定EPA沒有權限給予在SSM期間內違法業者創造任何答辯。雖然美國聯邦最高法院拒絕對此爭議聽案,但目前EPA仍有與州政府及企業主訴訟案在進行。

因應國際立法趨勢 專利法相關制度擬大幅度鬆綁

智慧局現正積極研修專利法,其中最為重要者包括: • 配合國際公共衛生議題,放寬強制授權條件; • 修正研究實驗免責相關規定; • 配合司法院智慧財產專業法院之成立,研擬設置爭議審議組; • 新型專利整體制度改革,考量原則開放「同一人」對於同一技術可「同時」申請,以利企業作專利佈局; • 大幅修正新式樣專利制度,開放多種新式樣保護標的,擴大新式樣專利保護範圍,以期帶動台灣文化創意及工業設計產業發展。   由於專利法這次修正為通盤修正,故智慧局刻正召開多場公聽會,參考各界意見及參酌國際立法趨勢為整體思考,以期建立更完善之專利制度。其中,針對新型專利制度之整體政策、專利年費逾越繳納期限產生失權後之救濟制度、以及以外文本提出申請取得申請日等三項議題,智財局已於 7 月 18 日 召開公聽會,聽取各界意見,尋求共識。   在新型專利整體制度改革部分,智慧局擬考量原則開放「同一人」對於同一技術可「同時」申請,以提供更多權益保障,以利企業作專利佈局。因此,企業一方面可取新型形式審查之便利領證,一方面也可取發明專利實體審查權利較穩定,而且二者前後接續。   有關專利權人逾越年費繳納期限產生專利權消滅後之救濟制度,依現行 專利法第82條 規定,發明專利第二年以後之年費,未於應繳納專利年費之期間內繳費者,得於期滿六個月內補繳之,但其年費應按規定之年費加倍繳納。根據前開規定,專利權人超過年費繳納期限,得於到期後六個月內加倍補繳年費,但專利權人超過一日與超過五個月,同樣都須加倍補繳,二者顯然有所失衡,因此,這次修法預備採取比率加繳制度,也就是說,依照超過的期限多寡,比率補繳,並非一率加倍補繳。   另外,超過六個月補繳期後,依照現行 專利法第66條第3款 規定,專利權當然消滅,只有在專利權人超過期限未繳年費是因具有不可抗力事由時,才能依 專利法第17條第2項 申請回復原狀,但是,一些專利權人超過繳費期限,並非因為具有不可抗力事由,而是具有正當理由,若因此而喪失專利權,顯非專利法保護專利權人之意旨,故此次修正亦放寬申請回復原狀之事由,以保障專利權人之權益。   針對外文本提出申請取得申請日部分,現行 專利法第25條第4項 規定,專利申請案允許申請人先以外文說明書提出申請,嗣後再補中文說明書,而專利法對於外文說明書之語文種類並無任何限制,以致外文本種類繁多,是否與中文譯本相符,認定上有困難。智慧局這次修正,研擬作適當限制,但是與會人員有不同意見,智慧局將再通盤考量。

TOP