歐盟發布「2021年數位經濟與社會指數」,指出數位轉型持續但不均

  歐盟執委會於2021年11月12日發布「2021年數位經濟與社會指數」(Digital Economy and Society Index 2021, DESI 2021),指數顯示歐盟各成員國都在持續推動數位轉型,但存在前段國家與後段國家之間的鴻溝仍然巨大,為了達成「歐洲數位十年:2030數位轉型目標」(Europe’s Digital Decade: digital targets for 2030),各成員國間應加強在數位轉型的協力合作。

  DESI 2021統計資料取自2020年第一季到第二季之間,因此對於COVID-19疫情肆虐下對歐洲各國數位化的影響,需要等到2022年的指數方能呈現。不過DESI 2021資料顯示,56%的歐盟公民已經具備基本的數位技能,而歐盟資通訊專業人員數量來到840萬人,相較前一年的780萬人有顯著成長,但仍有55%的企業表示推動數位轉型最大的困難在於找不到資通訊人才。

  在連線能力方面,歐盟推動「超高容量網路」(very high-capacity network, VHCN)的成果使家戶普及比例來到59%,相較前一年的50%亦有明顯增長,但相較全球高速寬頻網路普及目標仍有相當大的差距;在鄉村VHCN的布建上,則由2019年的22%來到2020年的28%。5G網路方面,完成頻譜分配的國家從16個成長至25個,其中有13個國家已經啟動5G商轉。

  在數位科技整合方面,運用雲端技術的公司比例出現顯著成長,由2018年的16%成長至2020年的26%,大型企業持續擴大數位科技應用,包含運用企業資源規劃(Enterprise Resource Planning, ERP)進行電子資訊分享、雲端軟體的使用等。資料顯示數位轉型正在不斷落實與推進,但是要達成2030數位轉型目標仍有相當大的差距,有賴各國的合作與努力。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 歐盟發布「2021年數位經濟與社會指數」,指出數位轉型持續但不均, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8767&no=0&tp=1 (最後瀏覽日:2026/01/02)
引註此篇文章
科法觀點
你可能還會想看
中國大陸於2016年3月25日起一個月內,對外徵求各界就其「互聯網域名管理辦法(修訂徵求意見稿)」之意見

  中國大陸工業和信息化部於2016年3月25日草擬「互聯網域名管理辦法(修訂徵求意見稿)」,並對外徵求相關意見至本年4月25日止。   該部曾於2004年11月5日公布互聯網絡域名管理辦法,然因隨著網際網路的發展,先前相關規範已不符時宜。新修訂之「互聯網域名管理辦法(修訂徵求意見稿)」計有六章,共56條條文。其中包含總則、域名管理、域名服務、監督檢查、罰則、及附則等規範內容。   本次修訂的重點在於中國大陸希冀建立其境內之域名暨相關服務管理體系,在第3條即開宗明義規定,中國大陸工業和信息化部對全國的域名服務實施監督管理;第5條亦規定,互聯網域名體系由工業和信息化部公告。且該管理辦法明定「.CN」、「.中國」屬於頂級域名,相關服務必須由設於中國大陸境內,且具備一定法定要件者始可提出申請。   此外,本次修法也強化其政府對域名管理的力度,如該管理辦法第4條規定,各省、自治區、直轄市通信管理局負責對本行政區域內的域名服務進行監督管理。又依第9條規定,在中國大陸境內設立域名伺服器及伺服器運行機構、域名註冊管理機構和域名註冊服務機構等,都要取得工業和信息化部,或是各省、自治區、直轄市通信管理局的許可。   因此,不論何業者如欲使用中國大陸相關域名服務或進行伺服器營運等業務,都在必須在其境內註冊、接受其主管機關之管理,且違反者依第48條以下之相關規定,將可能被處以罰款、公告違法情事,或限期改正等。

日本公布「特定數位平臺之透明性及公正性提升法」之透明性及公正性評鑑指標

日本經濟產業省(METI)於2022年12月22日於官網公布「特定數位平臺之透明性及公正性評鑑」報告(特定デジタルプラットフォームの透明性及び公正性についての評価),首次針對擁有數位平臺的大型IT(Information Technology)企業完成交易機制透明性及公正性評鑑,並要求被評鑑之企業進行改善。 該評鑑依據「特定數位平臺之透明性及公正性提升法」 (特定デジタルプラットフォームの透明性及び公正性の向上に関する法律,以下稱「透明化法」),透明化法於2020年5月通過並已在2021年2月施行。其目的是為了提高交易之透明性以及公正性,具體指定「特定數位平臺」之企業,並列為評鑑對象,課予其有揭露或公開特定訊息,與進行改善的義務。 本次的評鑑內容,是依該法第4條第1項、第8條以及第9條第2項所定,交易條件之資訊揭露義務為基礎,由日本經濟產業大臣指定數位平臺企業(提供者の指定),進行個案評鑑(評価)並要求其改善(勧告)。依據個案評鑑之內容,日本針對數位平臺之透明度及公正性之判斷,歸納出下列具有共通性之指標: 1.企業有揭露交易條件之義務 2.企業有完善交易機制之義務 3.企業有積極處理用戶申訴與糾紛之義務 4.針對應用程式商店(アプリストア),課徵手續費(手数料)與會員付款結帳(課金)方式之限制,企業有詳細說明之義務 5.企業本身或關係企業與平臺其他用戶之間須公平競爭,例如:企業與直營或非直營商店之間,具有利害關係或有優待行為時,企業須公開其管理方針,並列入內部稽核事項,使其能檢視差別對待之正當性。 6.停用帳戶或刪除之手續,企業在30天之前,就該處置之內容和理由,對消費者有通知之義務。 7.退款或退貨之流程,企業有積極和具體說明之義務,且須將處置成果公開。 關於評鑑對象之指定,是依同法第4條第1項所授權,由日本經濟產業省進一步於2021年2月1日頒布政令,以事業種類與規模進行區分。此外,被列為評鑑對象之企業必須在每年5月底前,各自將企業內部的因應措施,提交總結報告,並由經濟產業大臣進行審閱。值得注意的是,依評鑑結果所要求的改善措施,原則上以企業自主改善為要旨,但日本政府目前正商討今後是否需要以強制力介入;對於被列為評鑑企業之後續改善措施及透明化法之推動方向,值得作為我國數位平臺治理政策之借鏡與觀察。

紐西蘭通過「危害性數位通訊規制法」,對網路霸凌行為進行管制

  紐西蘭於2015年7月通過了「危害性數位通訊規制法」(Harmful Digital Communications Act)。有鑑於網路霸凌現象日益嚴重,甚至影響紐西蘭人民生命及身體安全,故而修訂法律規範之。 重點摘錄: 一、目的:減輕數據通訊對個人造成之傷害,並提供有害數據通訊之受害者提供補救的快速和有效的手段。 二、方法:   (一) 創建新的民事執行制度,以迅速有效地處理有害的數據通訊內容。   (二) 創建新的刑事犯罪,以應對最嚴重的有害的數據通訊行為。   (三) 修正現行法規,以釐清數據通訊和技術的發展適用範圍。 三、內容:   (一) 授權法院得要求網路通訊協定地址提供者(Internet Protocol Address Provider (IPAP))提交匿名之通訊傳播者資訊。   (二) 經受害學生同意後,其所屬學校之負責人得代表進行訴訟程序。   (三) 法院得依據「威脅將造成損害」(threats to cause harm)標準發布命令。   (四) 若不遵守法院命令將有刑事責任。   (五) 行為人經確定判決後,可處2年以下有期徒刑。   (六) 網路內容所有者(online content host)應設置聯絡機制。供使用者聯絡回報,並課予收到申訴時48小時內通知內容作者、申訴人以及取下霸凌內容之責任。   惟法律之修訂,亦引起相關批評,因「有害的」(harmful)之定義不明,而以刑事規制之,恐有侵害言論自由之疑慮。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

TOP