Facebook宣布改名為「Meta」,決心投入巨額資金發展虛擬實境並研發相關app提供用戶社交會面和辦公場所,藉此定位自己為元宇宙(Metaverse)公司。臉書創辦人Mark Zuckerberg在今(2021)年10月28日宣告將「Facebook」改名為「Meta」的公開信中提及,在元宇宙中,您幾乎能做到所有能想像到的事情,與朋友和家人聚會、工作、學習、購物等行為。
元宇宙這名詞是如此新穎,以至於沒有一個被普遍接受的定義。它被認為是網路的未來。由臉書創辦人上述的公開信可以得知,元宇宙是個讓使用者能身歷其境且包羅萬象的世界,將超脫電玩與娛樂而進入工作和商業的領域。現實生活中一切的行為幾乎都可以在元宇宙中進行,也因此,現實世界的法律問題,也可能發生在元宇宙中,進而影響法律秩序。
隨著區塊鏈和加密貨幣這類科技被廣泛採用,在元宇宙或Web3.0這樣的虛擬空間經營公司、買賣持有商品將順勢發展而來。財產的標記化(tokenization)也意味著任何實體或虛擬物的所有權可以被認證,也在無法竄改的帳本擁有權限碼,使得虛擬世界的交易更可靠。
非同質化代幣(Non-Fungible Tokens,下稱NFTs)是近來彰顯所有權的新興表現方式,這將會在元宇宙的經濟體系中扮演重要角色。所有因契約、租約而來的財產將被標記化,使人們有可能在Opensea這樣的平台購買數位土地、數位房產或者任何其他的數位虛擬物品,且一樣能證明所有權。可以說,數位財產標記化將對法律業產生最大影響。元宇宙將很有可能發展出一個數位城市,使消費者們能在數位世界購買土地,在土地上面建造房屋且將透過NFTs把房子放滿藝術品。消費者們可以好好裝扮自己在元宇宙內的分身,買電影院或者演唱會的票。所有的商品和服務可以透過NFTs標示所有權的方式跟企業購買。
在元宇宙裡,交易行為將與現實世界一模一樣。財產可以被交易、關係可以被建立,也可以成立公司,更會創造出智慧財產,也會產生著作權的爭端,或者發生利用數位資產洗錢、逃漏稅等新型態的犯罪,但元宇宙中的行為人與現實世界行為人不一定有明確連結,使得執法機關更難以追查,甚至產生管轄權之衝突。在元宇宙中存在和營運的公司也如同現實世界一樣,需要法律專家和保險制度降低他們的風險。
元宇宙對法律產業和監管機構帶來的影響是多方面的。Facebook,或者說改名後的Meta,有意激發世人對元宇宙的討論以及關注元宇宙的發展,而律師們和法律事務所也必須熟稔於這個領域,以應付那些即將要投入這項產業的客戶們。
美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。
日本國土交通省公布最後一哩路自駕車系統指引為促進自駕車研發和推廣,日本國土交通省召集產官學研各界成立先進安全汽車(Advanced Safety Vehicle, ASV)推進檢討會,檢討設計自駕車時之注意事項,並於2020年7月17日公布「最後一哩路自駕車系統基本設計書」(ラストマイル自動運転車両システム基本設計書),希望能藉此達成確保地方交通運輸能量及加速自駕車落地之目標。 「最後一哩路自駕車系統基本設計書」將操作適用範圍(Operational Design Domain, ODD)定義為限定區域或駕駛環境條件,並提出所有自駕車應具備之共通ODD,包括(1)道路/地理條件︰目標道路、行駛道路;(2)環境條件︰時間、天氣;(3)行駛條件︰行駛速度;(4)行駛空間︰可支援自駕車行駛之基礎設施,以及可提醒用路人注意正在進行自駕車實驗之設施。此外,由於不同應用情境會影響ODD之設定,故本書以限定路線下往返之自駕車為代表,說明在個案中該如何進一步檢討ODD。以行駛速度為例,在共通ODD中,最後一哩路自駕車時速應為30公里,但在提供限定路線內往返之載客服務時,自駕車的時速應設定在12公里以下。最後,「最後一哩路自駕車系統基本設計書」內整理最後一哩路自駕車共通及特有之技術要件,以及設計時應留意和確認的問題。
美國推動L Prize獎勵創新節能照明產品技術研發美國能源部依據「2007年能源獨立與安全法案」(The Energy Independence and Security Act (EISA) of 2007)第655條規定,設立Bright Tomorrow Lighting Prize (L Prize)競賽,這是第一個由美國政府所發起的科技競賽。此一規定係依據「2005年能源政策法」(Energy Policy Act of 2005)第1008條而來,賦予能源部對於與其政策目的相關、有重大貢獻的科技研發或商業應用,得設置競賽活動並提供獎金。因此,為了促進照明產業的發展,而固態照明(solid-state lighting)科技是具有潛力能減少照明能源的使用以達解決氣候變遷的方式之一,因此能源部希望在固態照明技術的研發上扮演催化者的角色,藉由此一競賽來刺激研發超效能固態照明產品以取代傳統照明設備。 此一規定對工業的發展造成挑戰,因為將會取代兩種日常生活所使用的產品:60W白熾燈泡與PAR 38滷素燈泡。於2008年5月首先展開的是60W白熾燈泡領域,因為此種燈泡是消費者最普遍使用的,約佔美國國內白熾燈泡市場的一半。要獲得此獎項的要求,必須該替代產品要能使用低於10W的電力,節省83%的能源。該競賽已於2011年8月結束,由Philips Lighting North America所研發的高效能LED產品獲得,除頒發一千萬美元的獎金外,亦已與聯邦政府簽署採購合約。該產品預計於2012年春於零售商店上架。 L Prize的第二階段競賽於2012年3月展開,希望針對PAR 38滷素燈泡領域,鼓勵企業研發LED替代產品,來取代通常使用於零售商店或戶外安全照明的聚光燈和探照燈等傳統PAR 38滷素燈泡。此一競賽獎勵對於全美的照明產業是相當好的挑戰,不僅能研發出創新、具有高效能的產品,亦能提升美國製造業的競爭力。目前全美國約有九千萬個PAR 38滷素燈泡,若能以高效能燈泡取代,能源部預估每年可以節省約11terawatt-hours的電力,並可減少七百萬噸的碳排放。 要贏得L Prize的產品必須通過嚴格的測試,包括其性能、品質、壽命、價格及是否適合量產等。由於在PAR 38滷素燈泡領域,至少必須製造50%的LED燈泡,且所有的組裝都須在美國完成,因此同時亦提供相當多的工作機會。
加拿大競爭局發布人工智慧與競爭諮詢報告加拿大競爭局(Competition Bureau Canada,下稱競爭局)為更了解人工智慧如何影響或促進競爭,於2025年1月27日發布人工智慧與競爭諮詢報告(Consultation on Artificial Intelligence and Competition)。競爭局於意見徵詢期間獲得來自學術界、法律界、產業協會及大型科技公司的意見書。 諮詢報告彙整意見書內容並列出以下重點: 1. 人工智慧從資料輸入、基礎模型至終端產品或服務各階段皆在快速發展,可以為市場帶來新的競爭或阻礙競爭,人工智慧可能影響競爭原因包含資源依賴、資料控制及市場參進障礙等等。 2. 人工智慧領域中大規模投資是技術成長的重要關鍵,大型企業可藉由市場力量減少競爭或進行創新,少數大型企業因擁有較高的投資能力及數據資料專屬性,在基礎架構層(運行人工智慧所需的工具,如人工智慧晶片、雲端運算及超級電腦等)中佔有極高的市場份額,但也有部分意見認為人工智慧市場仍蓬勃發展中,亦有企業或學術機構未過度依賴專有數據但仍能開發出產品。 3. 人工智慧可能導致反競爭行為,企業雖可透過垂直整合來降低成本並提高效率,但可能會減少現行市場內部競爭,或透過具有人工智慧的演算法進行定價,達到操縱市場價格的行為,現行反壟斷法未來是否可以解決此一問題還有待觀察。 藉由諮詢的過程,競爭局更能掌握人工智慧發展、也了解公眾對話的重要性,意見書亦有助於該局未來提出兼顧人工智慧發展及促進市場競爭之政策措施。 我國公平交易委員會已於112年5月成立AI專案小組,負責掌握國際間人工智慧相關競爭議題的趨勢與發展,並針對現行人工智慧發展與競爭法執法研提政策配套措施,我國公平交易委員會與加拿大競爭局對於人工智慧與市場競爭議題之後續動態,值得持續追蹤。