英國運輸部宣布擴大對平價零碳排車輛購車補助以推進車輛電動化

  英國運輸部(Department for Transport)於2021年12月15日宣布更新對零碳排放車輛購車補助計畫,未來將擴大對平價零碳排放車輛(affordable zero-emission vehicles)的購車補助,以創造更多購買電動車之誘因。充電式車輛購車補助計畫(plug-in grant scheme)在過去十年間已經補助超過50萬輛,並在2021年達成超過15萬輛,約每10台新車就有1台受該計畫補助,顯示電動車輛市場的持續擴大與需求的增加。

  本次更新將著眼於針對售價低於32,000英鎊的電動車輛(目前英國市場中約有20款車型符合條件),提供最高1,500英鎊的購車補助,並且針對無障礙車輛售價與購車補助金額上限提高至35,000英鎊與2,500英鎊。在貨車購車補助方面,每年將提供1,000位消費者購買大型貨車5,000英鎊或小型貨車2,500英鎊的購車補助,2021年充電貨車計畫的購車補助規模較2020年已成長超過250%。而在電動機車與電動自行車方面,英國政府將對於售價低於10,000英鎊的電動機車與電動自行車分別提供500英鎊及150英鎊的購車補助。

  英國政府指出,針對電動車輛的購車補助政策已經逐漸顯現效果,2021年電動汽車的銷售量已經超越2019年與2020年的加總數量,未來政府也將加強對充電基礎設施的建設,針對7.1千瓦以上的充電(包含快速充電)站訂定支付方式基本要求(例如必須具備無接觸支付方式)。英國政府承諾將提供35億英鎊用於支持英國汽車與供應鏈的電動化、電動汽車購車補助與興建基礎設施。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 英國運輸部宣布擴大對平價零碳排車輛購車補助以推進車輛電動化, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8788&no=64&tp=1 (最後瀏覽日:2026/01/16)
引註此篇文章
你可能還會想看
德國2021年再生能源法修正草案最新發展

  德國的再生能源法(Renewable Act)在經歷過2014年及2016年兩次較大的修正後,今年度九月由部分上議院議員提出修正草案。   德國再生能源法起源於20年前,當時主要重點在於提升離岸發電、太陽光電(Solar PV)及生物氣體、水力資源對於城市用電的供應率。由於現階段德國幾乎半數的城市用電仰賴上開再生能源,因此2021年度的修法上,主要導向了協助再生能源廠得以更完善的準備進入市場,包括與現有的政策發展接軌,例如2020年的國家氫能源政策(hydrogen strategy)及電動車的電價制定等。以下將列舉數項較為重大之項目: 實現2050年碳中立的目標 結合歐盟遠大的氣候目標 擴大再生能源產能 重新制定再生能源徵收稅款 提高公眾對於再生能源的接收度 於德國南方增設更多風力發電的渦輪機及生物燃料 訂定彈性電價 提升太陽能板安裝回饋酬勞 響應氫能源政策,擬使氫能源廠商於使用再生能源時得免付費(但此項提案尚待利害關係人取得共識)。   本次再生能源法的修正提案誠然立意良善,但仍有不少批評者認為,本次修法未將日後使用再生能源的人數可能增加一事納入考量,且未將老舊風機重新供電等事納入法規中。   而根據11月份修法決議結果,德國政府並未採納上開提案,其中主要理由是認為該草案所列之內容無法達成氣候目標(climate targets),並建議該提案應擴張再生能源產能,尤其是離岸風電及太陽能。德國能源部則認為提案中所預估的2030年電力需求過低,無法切實因應未來的需求,是以,未來德國再生能源法之修法方向仍有待持續觀察。

日本智慧交通挑戰計畫

  日本經濟產業省於2018年召開「IoT和AI可能衍生之新型態交通服務研究會」(IoTやAIが可能とする新しいモビリティサービス関する研究会),並於2019年4月公布「朝向新型態交通服務之活性化」(新しいモビリティーサービスの活性化に向けて)報告;國土交通省亦自2018年底起召開「都市與地方新型態交通服務懇談會」(都市と地方の新たなモビリティサービス懇談会),於2019年3月公布中間結果。經產省和國土省根據上述會議結論,自2019年4月起,發起支援地方政府挑戰推動新型態交通服務之新計畫「智慧交通挑戰」(スマートモビリティチャレンジ)。   「智慧交通挑戰」計畫之目的,在於促使地方政府與企業合作,以實現自動駕駛社會,並透過新型態交通服務解決既有交通問題和加速地方活性化,其具體措施包括︰(1)透過設置「智慧交通挑戰推進協議會」及舉辦論壇,促進地方政府和企業間共享資訊,形成工作網路;(2)經濟產業省補助新型態交通服務實用化、計畫制定和效果分析等計畫;(3)國土交通省補助MaaS等新型態交通服務實驗,以及建構以解決地區交通服務為目的之模型等計畫。經產省與國土省分別自4月起對外公開募集提案,最終於75個提案中選出28個計畫,將於今年起陸續施行。

歐盟提出通用型人工智慧模型的著作權管理合規措施建議

歐盟提出通用型人工智慧模型的著作權管理合規措施建議 資訊工業策進會科技法律研究所 2025年07月23日 為推動以人為本且值得信賴之人工智慧(Artificial Intelligence, AI)應用,同時確保高度保護健康、安全及歐盟《基本權利憲章》所載之基本權利,包括民主、法治及環境保護,防止AI在歐盟境內造成有害影響,並依據歐盟《人工智慧法》(AI Act, AIA)第1條第1項支持創新。歐盟人工智慧辦公室(The European AI Office) 於2025年7月10日提出《人工智慧法案》關於通用型人工智慧的準則(The General-Purpose AI Code of Practice)[1],以下簡稱「GPAI實踐準則」。 該準則由辦公室擬定計劃邀集通用型人工智慧(以下簡稱GPAI)模型提供商、下游提供商、公協會、權利人、專家學者、民間團體組成工作小組,進行討論與草擬。目的在協助GPAI模型的提供者符合AIA要求其應訂定模型技術文件,提供給下游提供者,並應制定著作權政策、發布訓練內容摘要的規定。預計將自 2025 年 8 月 2 日起適用。 壹、事件摘要 歐盟GPAI實踐準則包括透明度、著作權與安全維護(Transparency, Copyright, and Safety and Security)三大章節。為證明符合AIA第53條及第55條所規定義的指導文件(guiding document),並確保GPAI提供者(providers)遵守其在《人工智慧法》下之義務,於該準則於著作權章節提供適用AIA第53條第1項(c)款規定[2]的措施建議。 該準則強調採取相關措施可以證明符合前揭定之義務,但符合歐盟著作權及相關權利法規,並不以遵守該準則為要件,而且也不會影響歐盟著作權及相關權利法規的適用與執行,其權利最終歸屬法院。而著作權人依法保留的權利,以及針對文字與資料探勘(Text and Data Mining, TDM)的例外或限制 (EU 2019/790號指令第4條第1項),仍應在合法條件下適用。 考量到一些GPAI提供者是新創企業,規模有別於一般企業,故該準則亦強調其所要求採取的是相稱措施(proportionate measures),應與提供者之規模相稱且合乎比例(commensurate and proportionate),並充分考量中小企業(SMEs),包括新創公司(startups)之利益。 貳、重點說明 該準則建議GPAI提供者,採取訂定著作權政策、合法重製、尊重權利保留、積極防止侵權、提供問責管道等五大著作權管理措施。 一、訂定、維持並實施著作權政策 為證明已符合AIA第53條第1項(c)款所負之義務,GPAI提供者針對其投放於歐盟市場之通用人工智慧模型,應制定政策以遵守歐盟著作權及相關權利法規。該準則建議提供者應將著作權章節所列措施納入於政策中,公開發布並維持最新狀態其著作權政策摘要,且在組織內部指派負責實施和監督。 二、獲取合法可存取之受著作權保護內容 GPAI提供者進行 EU 2019/790號指令第2條第2項之文字與資料探勘及訓練其通用人工智慧模型進行網際網路內容的重製並擷取時,例如使用網路爬蟲(web-crawlers)或授權他人使用網路爬蟲代其抓取(scrape)或以其他方式編譯資料,應防止或限制對作品及其他受保護標的物之未經授權行為,特別是應尊重訂閱模式(subscription models)或付費牆(paywalls)所施加之任何技術性拒絕或限制存取。而且在進行網路爬取時,應排除歐盟認定為持續且重複大規模商業侵犯著作權及相關權利之網站。 三、識別並遵守權利人的權利保留 GPAI提供者文字與資料探勘及訓練其通用人工智慧模型,其網路爬蟲應識別並遵守EU 2019/790號指第4條第3項的機器可讀(machine-readable)權利保留[3],讀取並遵循機器人排除協議(Robot Exclusion Protocol, robots.txt)。 該協議包括任何經網際網路工程任務組(Internet Engineering Task Force,IETF)證明技術上可行且可由AI提供者和內容提供者(包括權利人)實施之版本,或經國際或歐洲標準化組織採納透過基於資產(asset-based)或基於位置(location-based)之詮釋資料(metadata)等其他方式的機器可讀協議。亦包括通常係透過在歐盟層級經由權利人、AI提供者及其他相關利害關係人參與討論所達成共識的識別方案。 GPAI提供者亦應透過公開該等資訊並提供受影響權利人可在該等資訊更新時自動獲得通知的適當措施,使受影響之權利人能夠取得相關資訊,包括所用的網路爬蟲、所採識別並遵守權利保留之措施。 四、降低著作權侵權輸出之風險 為降低整合GPAI模型的下游人工智慧系統(downstream AI system),生成可能侵害著作權或相關權利的作品或其他標的物GPAI提供者應實施適當且合乎比例之技術保障措施,防止其模型生成以侵權方式重製受歐盟著作權及相關權利法規保護之訓練內容。;同時,在使用政策、條款與條件或其他類似文件中禁止模型用於著作權侵權目的。對於以自由及開源授權(free and open source licenses)發布之GPAI模型,應在隨附文件中請使用者注意禁止模型用於著作權侵權用途。無論是將模型整合至其自身的人工智慧系統,或係依據契約關係提供給他人。 五、提供聯繫受理管道 GPAI提供者應提供與受影響權利人進行連繫的管道與資訊,讓受影響之權利人及其代理人(包括集體管理組織(collective management organizations))以電子方式進行投訴。同時,勤勉、非任意地並在合理時間內處理投訴,除非投訴明顯無根據,或已對同一權利人提出之相同投訴作出回應。 參、事件評析 美國先前於2025年6月23日曾由加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出AI訓練行為可主張合理使用的簡易裁決(summary judgment)[4]。但法官仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定,並不支持盜版一本本來可以在書店購買的書籍對於創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。 這次歐盟的準則更明確指出,GPAI提供者進行文字與資料探勘及訓練其通用人工智慧模型,以網路爬蟲(web-crawlers)進行網際網路內容的擷取,應尊重訂閱模式(subscription models)或付費牆(paywalls)所採取的技術性拒絕或限制存取。而且在進行網路內容爬取時,應排除歐盟認定為持續且重複大規模商業侵犯著作權及相關權利之網站,即訓練資料的取得必須是合法。而且必須積極使用可識別並遵守機器人排除協議(Robot Exclusion Protocol, robots.txt)的技術,更應透過公開該等資訊、提供受影響權利人可在該等資訊更新時自動獲得通知的適當措施,使受影響之權利人能夠及時知悉所用網路爬蟲、所採尊重權利保留之措施。 雖然前揭美國法院案件正在進行審理,但顯然與歐盟的GPAI實踐準則及美國著作權局的合理使用立場[5]一樣,均不認同迴避權利保護施、自盜版網站取得的資料之情況。我國日前發生七法與法源公司之間的著作權訴訟,七法以網路爬蟲爬取法源公司於使用條款限制存取的資料,並非技術創新撞上不合時宜的舊有法律框架,而是創新應用仍應在合理保護權利的前提下進行。 歐盟GPAI實踐準則所揭示的政策制訂、尊重權利保留、積極防止侵權、提供有效且給予合理回應的問責管道等AIA合規要求,已提示GPAI的開發、服務提供,應如何透過公開、揭露措施來配套降低科技創新應用過程對既有權利的影響,也指引其應建立的內部管理與外部溝通重點。對於開發、運用GPAI對外提供服務的企業而言,在爭執訓練資料應有合法空間的同時,或許應該思考是否應先採取歐盟GPAI實踐準則所建議的措施,以尊重既有權利的態度,積極降低權利人的疑慮,始有助於形成互利的合法利用空間。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai。(最後閱覽日:2025/07/21) [2]該條款要求將通用人工智慧模型投放於歐盟市場(Union market)之提供者,必須制定政策以遵守歐盟著作權及相關權利法規,特別是透過最先進之技術,識別並遵守權利人依據《第2019/790號指令》(Directive (EU) 2019/790)第4條第3項所表達之權利保留。 [3]指不接受其著作被用於文字與資料探勘目的之利用。 [4]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [5]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

RFID電子式護照的應用與法律爭議

TOP