世界經濟論壇發布《2022年全球網路安全展望》

  世界經濟論壇(World Economic Forum, WEF)於2022年1月18日發布《2022年全球網路安全展望》(Global Cybersecurity Outlook 2022),以面對因COVID-19大流行所致之遠距辦公、遠距學習、遠距醫療等新形態數位生活模式快速發展,以及日漸頻繁之具破壞性網路攻擊事件。為考量國家應優先考慮擴展數位消費工具(digital consumer tools)、培育數位人才及數位創新,本報告說明今年度網路安全發展趨勢及未來所要面對之挑戰包括如下:

  1. COVID-19使得工作習慣轉變,加快數位化步伐:約有87%企業高階管理層計畫透過加強參與及管理第三方的彈性政策、流程與標準,提高其組織的網路韌性(cyber resilience)。
  2. 企業資安長(chief information security officers, CISO)及執行長(chief executive officers, CEO)之認知差異主要有三點:(1)92%的CEO認為應將網路韌性整合到企業風險管理戰略中,惟僅55%CISO同意此一作法;(2)由於領導層對網路韌性認知差異,導致安全優先等級評估與政策制定可能產生落差;(3)缺乏網路安全人才以面對網路安全事件。
  3. 企業最擔心之三種網路攻擊方式為:勒索軟體(Ransomware attacks)、社交工程(social-engineering attacks),以及惡意內部活動。惡意內部活動係指企業組織之現任或前任員工、承包商或業務合作夥伴,以對組織產生負面影響方式濫用其關鍵資產。
  4. 憂心中小企業數位化不足:本研究中有88%之受訪者表示,擔心合作之中小企業之數位化程度不足,導致供應鏈或生態系統中使其網路韌性受阻。
  5. 網路領導者認為建立明確有效的法規範,將有助於鼓勵資訊共享與促進合作。

     

相關連結
相關附件
你可能會想參加
※ 世界經濟論壇發布《2022年全球網路安全展望》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8791&no=0&tp=1 (最後瀏覽日:2025/12/10)
引註此篇文章
科法觀點
你可能還會想看
五年投資一百五十億 生醫科技島計劃啟動

  經過一年以上的準備,行政院科技顧問組六日宣布啟動「生醫科技島計畫」計劃。自今年起以五年投入一百五十億元預算,建立「國民健康資訊基礎建設整合建置計畫( NHII )」、「台灣人疾病及基因資料庫( Taiwan Biobank )」、及「臨床試驗研究體系」三大重點。未來除了減少健保成本一百億元以上,也希望協助業界創造數百億元市場商機。   生醫科技島計畫為國內所帶來的效益方面, NHII 將可減少醫療支出三%,共一百億元規模,至於促進民間投資及產業升級方面,預期五年內可帶動民間及政府投資四百億元以上;至於 Taiwan Biobank 方面,除了領先新加坡及中國大陸建立華人特定族群基因資料庫的供給中心,更可帶動國內的新藥開發、基因治療、藥物副作監測,及疾病篩檢及防治等醫藥發展。   行政院科技顧問組指出,其中 Taiwan Biobank 計劃因為涉及「科技對倫理、法律及社會( ELSI )」等議題有較多社會疑慮,將根據現有的醫事法及立法院正進行三讀的個人資料保護法立法精神,預計今年先進行五千人基因資料蒐集,待兩年後正式的基因資料保護相關法律定出新法後,將會加速完成二十萬人的資料蒐集。

日本2017年5月30日修正施行之個人資料保護法,對於家長會蒐集、處理、利用個人資料之影響

  依日本2017年5月30日修正施行之個人資料保護法的最新規定,家長會、同學會、管委會等,就個人資料的蒐集、處理、利用,應與以蒐集、處理、利用個人資料為業之公司行號,在法律上承擔相當之責任、義務。   因此自2017年5月30日起,家長會蒐集、處理、利用個人資料,需要注意以下四點:   一、經當事人請求,應刪除其個人資料。      修正後的個人資料保護法施行後,明知未經或不確定是否經學生監護人同意,而取得其個人資料,都是違法的行為。但目前已經取得的個人資料,即使明知未經或不確定是否經學生監護人同意,也不需要立即刪除。惟若當事人請求刪除,則必須立即刪除。   二、學校應善盡告知之義務,取得學生監護人之同意後,方得將其個人資料轉交家長會蒐集、利用、處理,。   修正後的個人資料保護法允許由學校取得學生監護人之同意後,將其個人資料轉交家長會蒐集、利用、處理。但如果校方未充分盡到告知義務,則有違法之虞。實務上在九州的熊本曾經發生過這樣的案例,由於家長會未依法蒐集、處理、利用其個人資料,監護人提起告訴,最後雙方在二審達成和解。   三、經過監護人同意,方得將其個人資料造冊並刊登照片   由於須明確取得學生監護人之同意,方得將其個人資料造冊並刊登照片。因此為避免學校未善盡告知義務,建議家長會直接請監護人填妥加入家長會之同意書,並於同意書上載明授權蒐集、處理、利用其個人資料之範圍。   四、遵從個人情報保護委員會的指導   若家長會有非法蒐集、利用、處理個人資料之虞,個人情報保護委員會可以檢查並限期改正。屆期如未改正,可裁處罰金或懲役。

美國國會圖書館發布例外規則,將10項科技使用行為合法化

  美國國會圖書館(Library of Congress)依據著作權法(Digital Millennium Copyright Act,簡稱DMCA)第1201(a)(1)條授權,於2015年10月28日發布著作權法相關之例外規則(final regulations),明定10項與使用者權益相關的行為屬於著作權法保障之例外情況,將納入合理使用(fair use)範圍,不再視為侵害原著作權人之權利。上述合法的科技使用行為包含: 1.為了教育及其他非商業用途之目的,對視聽媒體所為之重製行為。 2.為了讓視覺或其他功能障礙者使用,對已購買之電子書所為之破解或形式轉換行為。 3.為了連結其他電信公司之網絡,針對手機及其他行動裝置之應用程式,所為之解鎖行為(unlocking)。 4.智慧型手機及其他行動裝置之越獄(jailbreaking)行為。使用者得利用外部工具取得系統最高權限,且不受原系統限制而安裝或解除安裝合法軟體。 5.智慧型電視之越獄行為。使用者得利用外部工具取得系統最高權限,不受原系統限制而安裝或解除安裝合法軟體。 6.汽車軟體之診斷、修理或改裝行為。車主或修車廠等人員得自行診斷、修理或改裝汽車軟體,不限於僅有汽車原廠得檢測或變更軟體。 7.為了促進電腦軟體的安全性,針對個人擁有之消費性家電、車輛及醫療裝置所為之軟體相關安全研究與測試行為。 8.某些需要透過與官方伺服器連線方能正常運作之遊戲軟體,於官方永久結束營運之後,使用者可自行建立伺服器,供擁有合法軟體的使用者繼續使用,但此項條款不包含主要內容儲存於官方伺服器之遊戲。 9.使用者可修改軟體程式,並使用其他的3D列印原料,不限於原廠預設之原料。 10.病人取得自身醫療裝置或監視系統數據之行為。本例外規則通過後,病人可合法取得自身醫療裝置之數據,而不違反著作權法之科技保護措施,不再受限於原先僅有醫院或醫療裝置公司可取得植入式醫療裝置之數據。   美國著作權法授權國會圖書館每三年發布一次例外規則,用以改善著作權法之「科技保護措施」的負面影響,並維護公眾接觸資訊之公共利益。上述第6至10項為本次新增之項目,但本次例外規則並未通過視聽著作空間轉換(space-shifting)及格式轉換(format-shifting)之行為、電子書專用閱讀器之越獄行為、或遊戲機(Video Game Consoles)之越獄行為。   針對開放汽車軟體之破解,某些汽車製造業者基於安全理由表示反對,但消費者方面,表達贊成意見人數明顯多於反對意見者。尤其是福斯汽車(Volkswagen)設計作弊程式通過廢棄排放檢驗的事件發生後,開放消費者得自行診斷、修理或改裝汽車軟體,將能降低此類弊端發生之機率,讓具有汽車軟體相關知識的消費者有機會能檢測汽車本身軟體是否符合法令規範或有任何異常。

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

TOP