瑞士ESG新法規正式生效

  全球多個國家目前正在促進企業推動「環境、社會和公司治理」(Environment, Social Responsibility, Corporate Governance, ESG)事務,以瑞士為例,有關ESG的新法規於2022年1月1日正式生效。

  在2022年1月1日生效的提案中,主要是對《瑞士債法典》(The Swiss Code of Obligations, CO)提出修正,包含「涉及公共利益(public interest)的企業應提出ESG事項報告」與「企業應就有無使用童工及衝突地區的礦物金屬進行盡職調查(Due Diligence)」,分別說明如下:

一、公共利益企業應提出ESG事項報告

依《瑞士債法典》第32章新增的第6節「非財務事項之透明度」(Transparency on Non-Financial Matters)規定,符合條件的上市公司或受監管實體等公共利益企業,每年應提出一份單獨的非財務事項報告,內容須涵蓋環境事項、社會問題、員工相關問題、尊重人權和打擊腐敗等議題,以及公司對該等議題所提出的政策措施、風險評估和實施績效等資訊。此報告經企業內部最高管理層與治理機構批准後,須立即於網路上公開,並確保至少十年內可供公眾存取。

二、企業應就有無使用童工及衝突地區的礦物金屬進行盡職調查

依《瑞士債法典》第32章新增的第8節「與來自受衝突影響地區的礦物金屬以及童工相關的盡職調查和透明度」(Due Diligence and Transparency in relation to Minerals and Metals from Conflict-Affected Areas and Child Labour)規定,所在地、總部或主要營業地點位於瑞士的企業,如在瑞士自由流通或加工來自受衝突影響和高風險地區(conflict-affected and high-risk areas)的特定礦物或金屬,抑或產品或服務被合理懷疑是使用童工製造或提供而成,原則上即須遵守供應鏈中的盡職調查義務,每年亦應將其遵守情況編制成報告。此報告應在會計年度結束後的六個月內於網路上發布,並確保至少十年內可供公眾存取。

相關連結
※ 瑞士ESG新法規正式生效, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8795&no=16&tp=1 (最後瀏覽日:2025/04/07)
引註此篇文章
你可能還會想看
涉外智慧財產權訴訟之國際裁判管轄-以侵害訴訟為中心

美國國會圖書館發布例外規則,將10項科技使用行為合法化

  美國國會圖書館(Library of Congress)依據著作權法(Digital Millennium Copyright Act,簡稱DMCA)第1201(a)(1)條授權,於2015年10月28日發布著作權法相關之例外規則(final regulations),明定10項與使用者權益相關的行為屬於著作權法保障之例外情況,將納入合理使用(fair use)範圍,不再視為侵害原著作權人之權利。上述合法的科技使用行為包含: 1.為了教育及其他非商業用途之目的,對視聽媒體所為之重製行為。 2.為了讓視覺或其他功能障礙者使用,對已購買之電子書所為之破解或形式轉換行為。 3.為了連結其他電信公司之網絡,針對手機及其他行動裝置之應用程式,所為之解鎖行為(unlocking)。 4.智慧型手機及其他行動裝置之越獄(jailbreaking)行為。使用者得利用外部工具取得系統最高權限,且不受原系統限制而安裝或解除安裝合法軟體。 5.智慧型電視之越獄行為。使用者得利用外部工具取得系統最高權限,不受原系統限制而安裝或解除安裝合法軟體。 6.汽車軟體之診斷、修理或改裝行為。車主或修車廠等人員得自行診斷、修理或改裝汽車軟體,不限於僅有汽車原廠得檢測或變更軟體。 7.為了促進電腦軟體的安全性,針對個人擁有之消費性家電、車輛及醫療裝置所為之軟體相關安全研究與測試行為。 8.某些需要透過與官方伺服器連線方能正常運作之遊戲軟體,於官方永久結束營運之後,使用者可自行建立伺服器,供擁有合法軟體的使用者繼續使用,但此項條款不包含主要內容儲存於官方伺服器之遊戲。 9.使用者可修改軟體程式,並使用其他的3D列印原料,不限於原廠預設之原料。 10.病人取得自身醫療裝置或監視系統數據之行為。本例外規則通過後,病人可合法取得自身醫療裝置之數據,而不違反著作權法之科技保護措施,不再受限於原先僅有醫院或醫療裝置公司可取得植入式醫療裝置之數據。   美國著作權法授權國會圖書館每三年發布一次例外規則,用以改善著作權法之「科技保護措施」的負面影響,並維護公眾接觸資訊之公共利益。上述第6至10項為本次新增之項目,但本次例外規則並未通過視聽著作空間轉換(space-shifting)及格式轉換(format-shifting)之行為、電子書專用閱讀器之越獄行為、或遊戲機(Video Game Consoles)之越獄行為。   針對開放汽車軟體之破解,某些汽車製造業者基於安全理由表示反對,但消費者方面,表達贊成意見人數明顯多於反對意見者。尤其是福斯汽車(Volkswagen)設計作弊程式通過廢棄排放檢驗的事件發生後,開放消費者得自行診斷、修理或改裝汽車軟體,將能降低此類弊端發生之機率,讓具有汽車軟體相關知識的消費者有機會能檢測汽車本身軟體是否符合法令規範或有任何異常。

日本產業活力再生法等修正案公布施行

  日本政府為求讓日本經濟發展能因應當前國際經濟現勢的結構性變化,相關產業活動有進行革新之必要;因此,日本政府提出「促進我國產業活動革新之產業活力再生特別措施法等法律部分修正案」(以下簡稱修正案),修正案係採包裹立法方式,修正「產業活力再生特別措施法」(簡稱產活法)、「礦工業技術研究組合法」(簡稱研究組合法),以及「產業技術力強化法」(簡稱產技法)等法律。修正案於今(2009)年4月22日經日本國會立法通過,同月30日公布(平成21年4月30日法律第29号),並於同年6月22日施行。以下針對三部法律中之主要修正項目簡介之。   首先,在產活法中,主要修正處是日本政府將出資與民間合作,成立「產業革新機構」股份有限公司,目的在結合公私資源,投資創新活動,包括集結最尖端基礎技術以協助進入應用開發階段,建立連結創投資本、新創企業與擔任將技術事業化之大企業的機制,以及將有技術優勢但埋沒大企業中之技術加以組合,並集中投入人力及資金以發揮價值。其次,在研究組合法中,主要修正處包括,擴大研究組合中可研發主題之技術範圍,放寬加入組合成員之資格,賦予研究組合組織變更、分割合併之可能。最後,在產技法中,主要修正處在於讓國有研發成果可以低於市價之價格實施,以促進將成果活用轉化成為產業實用之支援。日本政府之相關革新作法,其實際成效及對我國之啟發值得後續加以關注。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP