美國加州法院認定Broadcom控訴Netflix侵權之US 8365183專利不具適格性

  2022年4月美國加州法院於Broadcom控訴Netflix專利侵權一案中,就Broadcom的第US 8365183號美國專利(下稱183專利)做出無效的判決。

  於2020年3月,Broadcom就Netflix對消費者提供的影音服務提起訴訟,認為Netflix影音內容傳輸方式使用到Broadcom的多件專利技術,此次的183專利,主要是用來在多個電腦/伺服器設備中進行處理工作的分配,依Broadcom的主張,該技術應用於影音機上盒這類產品時,可有效的提升影音媒體的效率。這類專利與演算法有關,對於專利本質是否為抽象概念,需要通過美國最高法院就Alice案對於抽象概念的兩階段測試法,先檢驗請求項是否指向抽象概念,再檢驗請求項是否因其中元件(包含電腦/軟體)的配置,改變其性質而成為適格的專利標的。

  加州法院法官James Donato認為,就183專利所主張之請求項內容,主要是在於多個伺服器間進行工作分配,此種行為與辦公室裡進行工作分配並沒有不同,且日常生活中也充滿類似情況,如服務生依照顧客需求進行位置安排,就此Broadcom雖提出該專利方法可提高伺服器效率的論點,但法官認為該專利只是列出傳統電腦技術中會執行的步驟順序,未因該專利所揭露的方法促進電腦的功能,而不足以使抽象概念的性質轉化,因此就該專利做出無效的判決。

「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

相關連結
你可能會想參加
※ 美國加州法院認定Broadcom控訴Netflix侵權之US 8365183專利不具適格性, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8819&no=64&tp=1 (最後瀏覽日:2026/01/25)
引註此篇文章
你可能還會想看
美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件

美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。

Facebook v.s. Lamebook商標嘲諷性使用之爭

  Facebook是全球最大的社交網站,而Lamebook則是於2009年4月創辦,專門供網路使用者上傳搞笑文章、照片或發表瘋狂評論的小型網站。今年三月開始,Facebook對Lamebook發出許多警告信(cease and desist letter),要求Lamebook停止使用Lamebook字眼作為商標,否則將對其提出商標侵權的訴訟。今年七月時,Facebook的律師寫信給Lamebook主張其侵權,信中並聲稱Lamebook作為商標的使用,並非屬於受法律保護的嘲諷性商標使用(parody use),因為Lamebook的網站並未針對Facebook給予任何批評或評論。   然而Lamebook則認為其網站是專門供網友上傳他們在最愛的社交網站上所看到的搞笑照片或近況動態,屬於嘲諷性商標使用。為了先聲奪人,Lamebook搶在Facebook提出商標侵權訴訟前,於11月4日向德州Austin聯邦法院提出請求確認Lamebook詞語的使用並未侵害Facebook的商標權。   在歷經幾個月的溝通及發送警告信皆未果的情況下,Facebook的律師11月9日於加州San Jose聯邦法院,向Lamebook提起商標侵權訴訟,並對外說明Lamebook網頁呈現方式、Logo皆和Facebook非常相似,他們相信Lamebook網站有不正當企圖假借Facebook的名譽和名氣,吸引更多使用者使用Lamebook網站,Facebook將會持續保護自己的品牌和商標。   針對Facebook提出的商標侵權訴訟,Lamebook則回應其和Facebook所提供的服務並不相同,其並未提供社交服務予使用者。此外,Lamebook認為網站僅是提供一個機會予使用者對於全球最盛行的社交網站進行嘲諷、評論,Lamebook詞語的使用是屬於嘲諷性商標使用,屬於美國憲法第一修正案(First Amendment)所保障的言論自由權利,是一種受保護的言論表達形式,並未侵害或淡化Facebook的商標權。   值得一提的是,Lamebook並非屬於第一個被Facebook警告有商標侵權疑義的網站,在Lamebook訴訟案之前,已陸續有幾個網站受到Facebook指控商標侵權。而最近也出現許多聲浪開始撻伐Facebook不該以巨人之姿,將”face”和”book”兩個通用詞語予以壟斷,完全禁止他人使用這兩個詞語。   究竟Lamebook小型網站最終是否可以嘲諷性使用為由,於商標侵權大戰中,戰勝目前全球最熱門社交網站Facebook,容我們拭目以待。

歐盟議會發布《可信賴人工智慧倫理準則》

  2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下: 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。  問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。

品牌商標命名之實踐與提醒─從杜邦分析要件判斷商標混淆誤認之關鍵

陽明交通大學於2025年7月11日,透過律師向美國商標審判及上訴委員會(The Trademark Trial and Appeal Board,簡稱TTAB)提出答辯主張,主張其商標(縮寫為NYCU)並未和紐約大學的商標(縮寫為NYU)有混淆誤認之虞,以下將以此案為例,說明實務上如何運用DuPont Factors(又稱杜邦分析要件)判斷混淆誤認,品牌商標命名、註冊等階段時應注意的風險和實務上可行的因應措施。 杜邦分析要件係源於1973年的E.I. DuPont de Nemours & Co. v. Celanese Corp.案,用13個判斷分析要件檢視是否有商標混淆誤認的情形,是美國審查實務,或者相關商標爭議判斷,最常引用的判斷標準,並視個案情形引用對應要件。 本案陽明交通大學提出答辯主張包括:NYU與NYCU字母、意義等整體印象不同(第1項);NYU提供美國正式教育學位課程,而NYCU僅限於台灣課程,未提供美國正式學位,雙方提供不同之教育服務(第2項);NYCU僅有限參與國際會議並未於美國招生,通路未重疊,且消費族群均為高知識與謹慎決策者(第3~4項);無任何實際混淆的證據(第7項);NYCU長期使用該縮寫於國內外學術交流與排名中,未發生混淆而顯示兩者商標可共存(第8項);NYCU合法註冊校名之縮寫,具有使用與排他性權利,無混淆意圖亦未仿冒(第11項);雙方市場截然不同,混淆風險極低(第12項),以及若不准NYCU使用將造成教育機構正常名稱縮寫受限,牽涉公共利益、學術發展與合理使用(第13項)等。 品牌企業或學研法人不論從命名、商標註冊階段,甚至到商標異議、撤銷、侵權爭議等判斷,不可忽視商標之混淆誤認風險,將可能被迫改名、下架商品或服務調整行銷素材、重啟品牌命名流程等,耗費人力、時間或經費。因此,務必完善品牌商標管理機制,確保能掌握混淆誤認之判斷原則、階段性評估檢核,以降低品牌撞名或近似他人註冊商標之情形,進而鞏固品牌價值。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP