日本經濟產業省2022年4月8日公布「協調性資料加值運用之資料管理框架-透過確保資料可信度創造資料價值之新路徑」(協調的なデータ利活用に向けたデータマネジメント・フレームワーク~データによる価値創造の信頼性確保に向けた新たなアプローチ),提示確保資料可信度之方法。經濟產業省於2019年7月31日設立「第3層︰網路空間信賴性確保之安全對策檢討工作小組」(『第3層:サイバー空間におけるつながり』の信頼性確保に向けたセキュリティ対策検討タスクフォース」,以下簡稱工作小組),討論確保資料可信度之要件,以利資料在網路空間內自由流通,並藉由資料創造出新的附加價值。
工作小組為確保資料可信度,首先定義資料管理為「將資料屬性依據其所涉之法令或組織規章,以及因蒐集、處理、利用、移轉等活動而改變之過程,視為一個生命週期加以管理」,並認為資料管理會受到屬性(資料性質,如內容、揭露範圍、利用目的、資料管理主體、資料權利者等)、場域(針對資料之特定規範,如各國、地區法令、組織內部規定、組織間契約等)及事件(產生、改變及維持資料屬性之事件,如生產、蒐集、處理、移轉、提供、儲存、刪除)等三大要素影響,並據此建立資料管理模型。
工作小組期待藉由上述三大要素,依序透過讓資料處理流程(事件)處於容易被觀察的狀態、整理所涉及之相關規範(場域),以及判斷資料屬性等步驟,讓利害關係人之間可更容易進行資料共享及資料治理。
本文為「經濟部產業技術司科技專案成果」
法國知名品牌公司路易威登(Louis Vuitton,下稱LV) 與網際網路服務提供者(Internet Service Providers,以下簡稱ISP)之商標及著作權訴訟案,在2009年8月31日獲得加州聯邦地方法院陪審團的裁定,判定LV贏得商標及著作權侵害訴訟,並可獲得3240萬美元的損害賠償。LV在找到使用相同網址並且明知販賣LV假貨的網站後,於2007年提出著作權及商標侵害訴訟。 Steven Chen管理的Akanoc Solutions公司、Managed Solutions Group公司提供侵害LV商標及著作權網站網際網路的服務,加州聯邦地方法院陪審團認定Akanoc、Managed Solutions和Steven Chen須負輔助商標及著作權侵權之責任,並且要負損害賠償3240萬。同時,LV聲明希望法院對侵權的網站提出永久禁制令,禁止網站上兜售LV假貨。 陪審團的這項裁定引起網路上的討論,一般輿論都認為此項裁定賦予ISP業者太重的責任,然而陪審團決定的關鍵要點在於他們相信被告(Web Host)明知或可得而知侵權行為正在發生。 每日財經(Daily Finance)專欄作者Sam Gustin觀察指出:對於美國的ISP業者來說,此項規定傳達出一個清楚且略微可怕的訊息,當ISP業者提供服務的網站,有販售假貨或侵權物品,即便ISP業者有試著去阻止這項非法的活動,但卻失敗了,仍須負責。 LV智慧財產主管Nathalie Moullé-Berteaux認為陪審團所做出的這項裁定。對減少網站非法販賣偽造品或假貨跨出重要的一步,並且強制建立網際網路的法律規範
日本內閣府發布「綜合創新戰略2024」為應對日益嚴峻的國際情勢,並避免研究能力下降、生態系進展緩慢對經濟、社會發展造成衝擊,日本內閣府於2024年6月4日發布「綜合創新戰略2024」(統合イノベーション戦略2024),提出三大強化措施與三大發展主軸,綜整未來科技與創新的重要發展方向。具體內容整理如下: 1.強化措施 (1)關鍵技術綜合戰略 開發核心技術,在各戰略領域如人工智慧、機器人、物聯網等,透過產官學界合作推進技術融合與研究開發、推動人才培育,並促進新創發展。 (2)加強國際合作 從全球視角積極運用資源進行策略性協作,並以促進開發利用、確保安全性為主要目標,主導、參與重要技術相關之國際規則制定。 (3)強化人工智慧領域競爭力並確保安全性 包含創新研發人工智慧之應用,及利用人工智慧加速創新速度等。 2.發展主軸 (1)推進先進科技戰略 針對各重要領域如人工智慧、核融合能源、量子科技、生物科學、材料科學、半導體與通訊技術(6G)推展研究;確保大學與研究機構之研究安全性與倫理,並為設立智庫強化研究機能預做準備;同時綜合運用各領域的知識創造價值,為整體社會提供自動化、省力化、防災減災之科學技術。 (2)研究能力與人才培育 透過補助優秀大學與研究費用、扶植區域核心及具有特色的研究型大學、強化國家研究設施並促進設施間之合作性發展研究基礎;以及推動開放政府資助研究之資料與學術論文。 (3)營造創新生態系 透過SBIR計畫(Small Business Innovation Research,小型企業創新研發計畫)補助,並促進新創企業之政府採購;藉由產官學合作推展創新;以及擴大政府與民間研發投資規模,促進人才、技術、資金在大企業與新創公司間流動等。 日本政府認為,核融合能源與量子科技等關鍵技術將為新產業發展的開端,本戰略亦將成為未來日本新一期科學技術與創新基本計畫(科学技術・イノベーション基本計画)開展之基礎。我國於半導體、量子科技等關鍵科技發展皆緊跟國際腳步,因此相關戰略措施後續之推動與落實,亦值得我國持續關注、參考。
歐盟數位經濟公平稅負指令草案無共識,法國與奧地利將先行交付立法2018年3月21日,歐盟執行委員會(European Commission)發布數位經濟公平課稅(Fair Taxation of the Digital Economy)指令草案,指出在數位經濟模式中,由於創造利益的用戶資料地並不受限於營業處所,因此銷售貨物與提供勞務之增值發生地,與納稅主體之納稅地點分離,而無法為現行來源地原則所評價,嚴重侵蝕歐盟境內稅基。對此,該草案分別提出了數位稅(Digital Tax)與顯著數位化存在(Significant Digital Presence)兩份提案,用以針對特定數位服務利潤制定共同性數位稅制,以確保數位服務業者與傳統的實體公司立於平等的市場競爭地位。 值得關注的是,該草案之長遠解決提案以「顯著數位化存在」(Significant Digital Presence)修正國際間課稅權歸屬之重要人事(Significant People function)功能判斷,並認為建立利潤分配原則時,應參考經濟合作暨發展組織(Organization for Economic Cooperation and Development)稅基侵蝕與利潤移轉(BEPS,Base Erosion and Profit Shifting)行動計劃中DEMPE模式(Development Enhancement Maintenance Protection Exploitation function),決定獲利之分配,作為未來增值利益的認定。 然而不少持反對意見的國家認為,數位經濟只是傳統公司面對數位化,利用無形資產的商業模式改變而已,而此種新興模式並不足以作為開徵數位稅收新稅種。縱使數位經濟下無形資產產生之價值必須重新界定,現行稅收歸屬與國際間租稅協定本身並無不妥,而應強調各國稅捐機關之租稅資訊之合作。愛爾蘭已與捷克共和國、芬蘭、瑞典發表反對聲明,表示數位經濟課稅的方案不應背離BEPS行動計畫之期中報告,並應考慮到國際間因租稅引起的貿易戰爭,以及避免對數位經濟的扼殺。對此,歐盟監管審查委員會(Regulatory scrutiny Board)亦認為,草案並未針對數位稅的有效稅率進行量化分析,嚴重忽略了數位稅對於區域內經濟的衝擊。 由於未能獲得歐盟會員國的共識,法國為了回應黃背心運動(Mouvement des gilets jaunes)的要求, 12月17日法國財政部長已公開表示2019年3月前,將自行針對數位廣告所得與數位資料所得稅收法案送交國內立法程序,該法案將直接以境內網路社群利潤推估大型數位企業之應稅所得,並支持「顯著數位化存在」的認定原則。同時奧地利財政部長也表示,會跟進數位稅收的立法並於2019年1月底公布稅收草案。
OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。