2022年日本公布平台資料處理規則實務指引1.0版

  日本數位廳(デジタル庁)與內閣府智慧財產戰略推進事務局(内閣府知的財産戦略推進事務局)於2022年3月4日公布「平台資料處理規則實務指引1.0版」(プラットフォームにおけるデータ取扱いルールの実装ガイダンス ver1.0,簡稱本指引)。建構整合資料提供服務的平台,將可活用各種資料,並創造新價值(如提供個人化的進階服務、分析衡量政策效果等),為使平台充分發揮功能,本指引提出平台實施資料處理規則的六大步驟:

  1. 識別資料應用價值創造流程與確認平台角色:掌握從產生資料,到分析資料創造使用價值,再進一步提供解決方案的資料應用價值創造流程,以確認平台在此流程中扮演的角色。
  2. 識別風險:掌握利害關係人(如資料提供者與使用者等)顧慮的風險(如資料未妥適處理、遭到目的外使用等疑慮)。
  3. 決定風險應對方針:針對掌握的風險,決定規避、降低、轉嫁與包容等應對方針。
  4. 設定平台資料處理政策與對利害關係人說明之責任(アカウンタビリティ):考量資料處理政策定位,擬定內容,並向利害關係人進行說明。
  5. 設計平台使用條款:依據「PDCA循環」重複執行規則設計、運作與評估,設計平台使用條款。
  6. 持續進行環境分析與更新規則:持續分析內部與外部因素可能面臨的新風險,並更新平台資料處理規則。

     

相關連結
相關附件
你可能會想參加
※ 2022年日本公布平台資料處理規則實務指引1.0版, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8833&no=64&tp=1 (最後瀏覽日:2026/01/17)
引註此篇文章
你可能還會想看
日本發布Startup交易習慣之現況調查報告最終版,統整新創事業實務上遭遇不公平競爭行為之態樣

  日本公平交易委員會於2020年11月27日發布「Startup交易習慣之現況調查報告最終版」(スタートアップの取引慣行に関する実態調査について最終報告),主旨為揭露其國內新創事業於交易市場遭遇不公平競爭行為的調查結果。本報告的作成目的,係基於新創事業發展具備推動創新、活絡國內經濟之潛力,故針對各類型新創事業在參與市場交易時,有無因其與相對人間的不對等地位(因需仰賴相對人提供資金或資源),遭遇不公平競爭的情況進行調查。同時,本報告所公布的調查結果,將會作為未來訂定新創事業與合作廠商間契約指引的參考依據,以圖從制度面改善新創事業參與市場的競爭環境。   本報告書所調查的交易態樣,聚焦於容易出現不公平競爭行為的契約或競爭關係,並分別整理主要的行為態樣如下:(1)新創事業與合作廠商間之契約:要求新創事業揭露營業秘密、約定對合作廠商有利的保密協議條款、無償進行概念驗證(Proof of Concept)、無償提供授權、於共同研究契約中約定智財權僅歸屬合作廠商、延遲給付報酬予新創事業等;(2)新創事業與出資者間之契約:要求新創事業揭露營業秘密、負擔出資者外包業務予第三人之費用、購買不必要的商品或服務、提供片面優惠待遇、限制新創事業的交易對象等;(3)新創事業與其他競爭廠商間之關係:競爭廠商要求交易相對人不得向與其存在競爭關係之新創事業買入競爭性商品;競爭廠商針對特定新創事業設定較高的商品售價,而事實上拒絕與其進行交易等。同時,依據報告書,在與合作廠商或出資者進行交易、或訂定契約的過程中,約有17%的新創事業表示曾遭遇「無法接受的行為」(納得できない行為),且當中有約八成的新創事業妥協接受。其中,若為銷售額未滿5000萬日圓、且公司未配有法務人員的新創事業,遇到無法接受行為的事業家數為銷售額5000萬日圓以上、且公司有法務人員之新創事業的2.5倍。

以『江蘇科技改革30條』解析中國大陸科研經費改革制度

  中國大陸近年致力發展其國內技術研究產業,但在基礎研究經費申請制度上,長期存在一些結構問題,如在科研資助、實施和成果傳播三個階段。故自2017年起,中國大陸陸續修正關於科研經費制度,以使科技研究人員得以順利進行科研項目。截至目前,依中國大陸國發〔2018〕25號文為基準,江蘇省推出《關於深化科技體制機制改革推動高品質發展若干政策》(下簡稱『江蘇科技改革30條』),並出台完整的實用手冊 。   此次江蘇科技改革30條,明確落實中央對科研經費鬆綁及對科研結果獎勵與容錯的改革措施。在科研經費可直接列支項目的直接預算,如設備費、材料費等,從原本九個項目改合併為五個項目,科目經費支出將不再受比例限制;另在無法直接羅列預算項目的間接預算上,如績效支出等費用則精簡列支項目,提高間接費用核定比例。在科研結果獎勵與容錯改革上,建立原創成果獎勵機制、創新補償機制、援助機制及免責機制。   中國大陸科研經費長期採用嚴格預算制,直接預算需按照法律規範羅列,然間接預算部分常使研究人員因不知如何羅列,而導致研究經費中斷或減少。對於較易失敗的基礎研究上,研究人員則擔心在階段性考核中因錯誤致使研發經費無法取得,進而將錯就錯,謊報研究成果。此次江蘇科技改革30條修正,解決了上述科研經費制度的部分問題,並具體規範了實務上的操作。然各部會間如何解決關於監管經費結餘規範之法律衝突,及科研成果容錯機制之評價,仍待後續觀察。

美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

加拿大競爭局發布人工智慧與競爭諮詢報告

加拿大競爭局(Competition Bureau Canada,下稱競爭局)為更了解人工智慧如何影響或促進競爭,於2025年1月27日發布人工智慧與競爭諮詢報告(Consultation on Artificial Intelligence and Competition)。競爭局於意見徵詢期間獲得來自學術界、法律界、產業協會及大型科技公司的意見書。 諮詢報告彙整意見書內容並列出以下重點: 1. 人工智慧從資料輸入、基礎模型至終端產品或服務各階段皆在快速發展,可以為市場帶來新的競爭或阻礙競爭,人工智慧可能影響競爭原因包含資源依賴、資料控制及市場參進障礙等等。 2. 人工智慧領域中大規模投資是技術成長的重要關鍵,大型企業可藉由市場力量減少競爭或進行創新,少數大型企業因擁有較高的投資能力及數據資料專屬性,在基礎架構層(運行人工智慧所需的工具,如人工智慧晶片、雲端運算及超級電腦等)中佔有極高的市場份額,但也有部分意見認為人工智慧市場仍蓬勃發展中,亦有企業或學術機構未過度依賴專有數據但仍能開發出產品。 3. 人工智慧可能導致反競爭行為,企業雖可透過垂直整合來降低成本並提高效率,但可能會減少現行市場內部競爭,或透過具有人工智慧的演算法進行定價,達到操縱市場價格的行為,現行反壟斷法未來是否可以解決此一問題還有待觀察。 藉由諮詢的過程,競爭局更能掌握人工智慧發展、也了解公眾對話的重要性,意見書亦有助於該局未來提出兼顧人工智慧發展及促進市場競爭之政策措施。 我國公平交易委員會已於112年5月成立AI專案小組,負責掌握國際間人工智慧相關競爭議題的趨勢與發展,並針對現行人工智慧發展與競爭法執法研提政策配套措施,我國公平交易委員會與加拿大競爭局對於人工智慧與市場競爭議題之後續動態,值得持續追蹤。

TOP