瑞士聯邦委員會於2022年3月30日,發布了一份關於推進可信的「資料空間」(Data Spaces)與「數位自決權」(Digital Self-Determination)報告。此份報告旨在強調資料是數位時代下創造價值的基礎,為了更好地運用資料的潛在價值,呼籲各界採用新的資料使用概念,加強資料所有者(Data Owner)或資料控管者(Data Controller)對於資料的控制,以「數位自決權」為核心,透過科學技術與法律制度,進一步為實踐「資料共享」(Data Sharing)提供一個安全、便捷、自主、開放、公平而值得信賴的「資料空間」。
值得注意的是,透過該報告,聯邦委員會指示聯邦外交部(FDFA)與聯邦環境、運輸、能源和通訊部(DETEC)實施多項措施,以期能在2023年6月份之前,制定一部由所有利害關係人參與的可信賴資料空間操作之自願行為準則。
此外,該報告列舉出當下對於充分發揮資料潛力所存在的障礙,包括:
該報告更進一步指出資料流通的跨國性,因而有必要創建值得信賴且國際兼容的資料空間,為此亦須建立可信賴資料空間的國際準則,以在國際間形成法律確定性。
觀諸我國個人資料保護法第1條便明確指出,本法制定的目的不僅是為了保護個人資料以及相應之人格權與隱私權,而是更進一步欲透過個人資料管理制度的建構與落實,健全社會及商業互信,以期達成資料的合理利用、創造價值並促進公共福祉的終極目標。
關於我國的資料共享體制,現階段主要從金融機構間開始萌芽,未來如何以數位自決權為基礎,同時在充分保障資訊安全的前提下,擴及其他產業並接軌國際,有賴更多科技與法制的創造與積累、外國經驗的借鑑以及國際參與,而台灣近日以創始會員身分加入「全球跨境隱私規則論壇」(Global Cross-Border Privacy Rules Forum)即為著例。
三螺旋理論,又稱三螺旋創新模型理論(Triple Helix Theory),主要研究大學、產業以及政府以知識經濟為背景之創新系統中之型態關係,由Etzknowitz與Leydesdorff於1995年首次提出。 因應知識經濟時代來臨,三螺旋理論著重於政府、學術界與產業界(即為產、官、學)三者在創新過程中互動關係的強化。該理論探討如何協調產業、政府、學界三方於知識運用和研發成果產出上的合作;當社會動態產生改變,過去單一強大的領域將不足以帶動創新活動,推動創新也非單一方的責任,此時產業、政府、學界的三螺旋互動便隨之發生:大學透過創新育成機構孕育企業創新,而產業則扮演將研發成果商業化之要角,政府則透過研發相關政策、計畫或法規制定,鼓勵企業和大學間研究發展合作。 有別於早期經濟合作暨發展組織(OECD)將「產業」作為主要研發創新主體,三螺旋理論更重視產業、政府、學界三大主體均衡發展,三方主體各自獨立發展,且同時與其他方維持相互協力合作,共同推進經濟與社會之創新發展。 在三螺旋理論下,產、官、學因其強弱不等的互動狀態,形成不同的動態模型(例如國家干預模型、自由放任模型、平衡配置模型等等),這些動態模型被認為是產生創新的主要動力來源,對未來新知識和科技創造與擴散的能力以及績效具有決定性的影響力。
5G汽車協會發布《先進駕駛案例-聯網技術與無線電頻譜需求之遠景路線圖》5G汽車協會(5G Automotive Association, 5GAA)於2020年9月9日發布「先進駕駛案例-聯網技術與無線電頻譜需求之遠景路線圖」(A visionary roadmap for advanced driving use cases, connectivity technologies, and radio spectrum needs),提供車聯網技術與產業利益相關者對於未來遠景之綜整觀點。 白皮書著重於結合通訊科技之先進駕駛系統,具體描述先進駕駛系統與連結通訊技術在全球發展的現況與展望外,同時呼籲各國應提供車聯網(V2X)應用上足夠的無線通訊頻譜,以涵蓋接下來蜂巢式車聯網(C-V2X)、專用短程通訊技術(Dedicated Short Range Communications, DSRC),及5G-V2X之通訊技術普及,指出汽車與電信等全體利害關係產業共同合作已是趨勢,以確保整體車聯網交通獲得必要的投資與創造新的商機,更有利發揮車聯網真正效益。希冀運用車聯網技術增進未來道路交通之安全性、改善交通效率、降低環境生態之衝擊,並提升駕駛舒適性與整體運輸環境。迄今,全世界高達近2億部通訊聯網車輛於道路上行駛,透過技術得以交換交通與路況資訊,而具備蜂巢式通訊資訊能力之車輛數亦日益增加,證明各國已逐步完備基礎通訊技術與相關基礎建設之布建,而未來5G車聯網更將立基於此,進一步聚焦於運用5G-V2X提升駕駛效率與安全,技術上包括整合最新晶片組與模組的車載設備(OBU)、路側設備(RSU)、智慧型手機,提出感測器共享與協同操控等先進駕駛應用案例。 此外,白皮書更對車聯網行動通訊之頻譜提出建議,概述在國際數位交通運輸體系下,車輛、用路人、路側設備及智慧運輸系統基礎設施,應與蜂巢式網路之通訊協調,共同使用5855至5925MHz中低頻段之通訊頻譜,以提升無線頻譜的運用效益、行動網路涵蓋率與通訊之安全性。而欲實現端對端之車聯網與發揮車輛連網的真正效益,亦需為專用短程通訊技術在5.9GHz提供足夠的頻段分配,其中基本安全應用需要10~20MHz,先進駕駛應用則額外還需至少40MHz,並提供路側設備低延遲性網路服務,以利資訊即時傳輸,白皮書更強調基本和先進駕駛系統之頻譜需求差異將涉及安全性之問題,不可輕視。
英國Ofcom公佈光纖網路備援電池之管制指引因預期超高速網路在英國將被廣泛佈建,Ofcom於2011年6月啟動諮詢程序,徵詢各界光纖網路備援電池的管制指引,以確保消費者的緊急電話服務;並於同年12月公佈諮詢結果與更新管制指引。 英國境內光纖到終端(FTTP)服務的覆蓋率已達到58%,雖得以提供消費者更高速的上網與影音內容,但卻有停電時無法運作的先天缺陷。由於傳統電話運作所需的電力係經由業者機房透過銅絞線供應,故即便消費者終端停電,仍能緊急電話。因此Ofcom曾於2009年要求公眾電話業者(PATS)確保消費者終端有維持供電4小時以上的備援電池,以保障民眾的身家安全。而此項管制則是納入ECN/ECS業者之第3項一般條件的管制中,業者有因而有遵守的義務。 此次徵詢結果,Ofcom確立了以下兩點管制指引: 1. PATS必須確保提供備援電池:PATS若由消費者選擇是否安裝備援電池,將被認為不符義務。若PATS選擇由消費者負擔更換電池之責任,應提供適切指引並確保易於取得電池;若責任由PATS承擔,則應建立適切處理程序。 2. 備援電池最低供電時數降為1小時:主要理由為英國大部分的斷電事件都不超過1小時;且行動電話相當普及,增加了安全保障。而備援電力降為1小時後,將使其電池更輕便和更易分離,因而更易於產製購買、取得與安裝。不過對於歷史上曾發生斷電超過1小時的家戶,PATS仍有義務確保較長時間的備援電力。
英國政府公布物聯網設備安全設計報告,提出製造商應遵循之設計準則草案英國數位、文化、媒體暨體育部於2018年3月8日公布「安全設計(Secure by Design)」報告,此報告目的在於使IoT設備製造商於製程中即採取具有安全性之設計,以確保用戶之資訊安全。 此報告中包含了一份經英國國家網路安全中心(National Cyber Security Centre, NCSC)、製造商及零售商共同討論後,提出之可供製造商遵循之行為準則(Code of Practice)草案。 此行為準則中指出,除設備製造商之外,其他包含IoT服務提供者、行動電話軟體開發者與零售商等也是重要的利益相關人。 其中提出了13項行為準則:1. 不應設定預設密碼(default password);2. 應實施漏洞揭露政策;3. 持續更新軟體;4. 確保機密與具有安全敏感性的資訊受到保護;5. 確保通訊之安全;6. 最小化可能受到攻擊的區域;7. 確保軟體的可信性;8. 確保個資受到妥善保障;9. 確保系統對於停電事故具有可回復性;10. 監督自動傳輸之數據;11. 使用戶以簡易的方式刪除個人資訊;12. 使設備可被容易的安裝與維護;13. 應驗證輸入之數據。 此草案將接受公眾意見,並於未來進一步檢視是否應立相關法律。