瑞士聯邦委員會於2022年3月30日,發布了一份關於推進可信的「資料空間」(Data Spaces)與「數位自決權」(Digital Self-Determination)報告。此份報告旨在強調資料是數位時代下創造價值的基礎,為了更好地運用資料的潛在價值,呼籲各界採用新的資料使用概念,加強資料所有者(Data Owner)或資料控管者(Data Controller)對於資料的控制,以「數位自決權」為核心,透過科學技術與法律制度,進一步為實踐「資料共享」(Data Sharing)提供一個安全、便捷、自主、開放、公平而值得信賴的「資料空間」。
值得注意的是,透過該報告,聯邦委員會指示聯邦外交部(FDFA)與聯邦環境、運輸、能源和通訊部(DETEC)實施多項措施,以期能在2023年6月份之前,制定一部由所有利害關係人參與的可信賴資料空間操作之自願行為準則。
此外,該報告列舉出當下對於充分發揮資料潛力所存在的障礙,包括:
該報告更進一步指出資料流通的跨國性,因而有必要創建值得信賴且國際兼容的資料空間,為此亦須建立可信賴資料空間的國際準則,以在國際間形成法律確定性。
觀諸我國個人資料保護法第1條便明確指出,本法制定的目的不僅是為了保護個人資料以及相應之人格權與隱私權,而是更進一步欲透過個人資料管理制度的建構與落實,健全社會及商業互信,以期達成資料的合理利用、創造價值並促進公共福祉的終極目標。
關於我國的資料共享體制,現階段主要從金融機構間開始萌芽,未來如何以數位自決權為基礎,同時在充分保障資訊安全的前提下,擴及其他產業並接軌國際,有賴更多科技與法制的創造與積累、外國經驗的借鑑以及國際參與,而台灣近日以創始會員身分加入「全球跨境隱私規則論壇」(Global Cross-Border Privacy Rules Forum)即為著例。
法國國民議會(National Assembly)於2019年7月9日通過反仇恨言論立法提案,希望效仿德國社群媒體管理法(NetzDG),課予網路平台業者積極管理平台上仇恨言論(hate speech online)之責任。該提案希望透過立法要求大型網路平台及搜尋引擎,如Facebook及YouTube等,必須設置用戶檢舉管道,並於24小時內刪除以種族、宗教、性別、性取向或身心障礙為由之煽動仇恨或歧視性侮辱言論,否則將面臨高達全球營業額4%之罰款。 在主管機關方面,規劃由法國廣電主管機關「最高視聽委員會」(High Audiovisual Council, CSA)進行監管,網路平台業者必須向其提交仇恨言論之處理報告與相關數據。同時,平台業者應加強與法國司法系統的合作,取消違法用戶的匿名權利並提供相關證據資料,以利司法追訴。 2019年3月15日紐西蘭清真寺槍擊案之網路直播事件,讓各國警惕勿讓網路平台成為傳遞仇恨言論的工具。發起立法的法國議員Laetitia Avia表示,對抗網絡仇恨言論是場艱巨且長期的戰鬥,希望透過立法讓各方負起應有的責任,讓仇恨言論無所遁形,但反對者認為平台業者為了避免裁罰的風險,可能會對內容進行過度審查,相關自動化過濾技術也可能對言論自由產生不利影響。本立法提案仍待法國參議院完成審議。
歐洲個人資料保護委員會發布數位服務法與一般資料保護規則相互影響指引「歐洲資料保護委員會」(European Data Protection Board, EDPB)於2025年9月12日發布《數位服務法》(Digital Services Act, DSA)與《一般資料保護規則》(General Data Protection Regulation, GDPR)交互影響指引(Guidelines 3/2025 on the interplay between the DSA and the GDPR)。這份指引闡明中介服務提供者(intermediary service providers)於履行DSA義務時,應如何解釋與適用GDPR。 DSA與GDPR如何交互影響? 處理個人資料的中介服務提供者,依據處理個資的目的和方式或僅代表他人處理個資,會被歸屬於GDPR框架下的控制者或處理者。此時,DSA與GDPR產生法規適用的交互重疊,服務提供者需同時符合DSA與GDPR的要求。具體而言,DSA與GDPR產生交互影響的關鍵領域為以下: 1.非法內容檢測(Illegal content detection):DSA第7條鼓勵中介服務提供者主動進行自發性調查,或採取其他旨在偵測、識別及移除非法內容或使其無法存取的措施。指引提醒,中介服務提供者為此採取的自發性行動仍須遵守GDPR要求的處理合法性,而此時最可能援引的合法性依據為GDPR第6條第1項第f款「合法利益」(legitimate interests)。 2.通知與申訴等程序:DSA所規定設通報與處置機制及內部申訴系統,於運作過程中如涉及個資之蒐集與處理,應符GDPR之規範。服務提供者僅得蒐集履行該義務所必須之個人資料,並應確保通報機制不以通報人識別為強制要件。若為確認非法內容之性質或依法須揭露通報人身分者,應事前告知通報人。同時,DSA第20條與第23條所規範之申訴及帳號停權程序,均不得損及資料主體所享有之權利與救濟可能。 3.禁止誤導性設計模式(Deceptive design patterns):DSA第25條第1項規範,線上平台服務提供者不得以欺騙或操縱其服務接收者之方式,或以其他實質扭曲或損害其服務接收者作出自由且知情決定之能力之方式,設計、組織或營運其線上介面,但DSA第25條第2項則宣示,線上平台提供者之欺瞞性設計行為若已受GDPR規範時,不在第25條第1項之禁止範圍內。指引指出,於判斷該行為是否屬 GDPR 適用範圍時,應評估其是否涉及個人資料之處理,及該設計對資料主體行為之影響是否與資料處理相關。指引並以具體案例補充,區分屬於及不屬於 GDPR 適用之欺瞞性設計模式,以利實務適用。 4.廣告透明度要求:DSA第26條為線上平台提供者制定有關廣告透明度的規範,並禁止基於GDPR第9條之特別類別資料投放廣告,導引出平台必須揭露分析之參數要求,且平台服務提供者應提供處理個資的法律依據。 5.推薦系統:線上平台提供者得於其推薦系統(recommender systems)中使用使用者之個人資料,以個人化顯示內容之順序或顯著程度。然而,推薦系統涉及對個人資料之推論及組合,其準確性與透明度均引發指引的關切,同時亦伴隨大規模及/或敏感性個人資料處理所帶來之潛在風險。指引提醒,不能排除推薦系統透過向使用者呈現特定內容之行為,構成GDPR第22條第1項的「自動化決策」(automated decision-making),提供者於提供不同推薦選項時,應平等呈現各項選擇,不得以設計或行為誘導使用者選擇基於剖析之系統。使用者選擇非剖析選項期間,提供者不得繼續蒐集或處理個人資料以進行剖析。 6.未成年人保護:指引指出,為了符合DSA第28條第1項及第2項所要求於線上平台服務中實施適當且相稱的措施,確保未成年人享有高度的隱私、安全與保障,相關的資料處理得以GDPR第6條第1項第c款「履行法定義務」作為合法依據。 7.系統性風險管理:DSA第34與35條要求超大型在線平台和在線搜索引擎的提供商管理其服務的系統性風險,包括非法內容的傳播以及隱私和個人數據保護等基本權利的風險。而指引進一步提醒,GDPR第25條所設計及預設之資料保護,可能有助於解決這些服務中發現的系統性風險,並且如果確定系統性風險,根據GDPR,應執行資料保護影響評估。 EDPB與其他監管機關的後續? EDPB的新聞稿進一步指出,EDPB正在持續與其監管關機關合作,以釐清跨法規監理體系並確保個資保護保障之一致性。後續進一步的跨法域的指引,包含《數位市場法》(Digital Markets Act, DMA)、《人工智慧法》(Artificial Intelligence Act, AIA)與GDPR的相互影響指引,正在持續制定中,值得後續持續留意。
英國運輸部宣布擴大對平價零碳排車輛購車補助以推進車輛電動化英國運輸部(Department for Transport)於2021年12月15日宣布更新對零碳排放車輛購車補助計畫,未來將擴大對平價零碳排放車輛(affordable zero-emission vehicles)的購車補助,以創造更多購買電動車之誘因。充電式車輛購車補助計畫(plug-in grant scheme)在過去十年間已經補助超過50萬輛,並在2021年達成超過15萬輛,約每10台新車就有1台受該計畫補助,顯示電動車輛市場的持續擴大與需求的增加。 本次更新將著眼於針對售價低於32,000英鎊的電動車輛(目前英國市場中約有20款車型符合條件),提供最高1,500英鎊的購車補助,並且針對無障礙車輛售價與購車補助金額上限提高至35,000英鎊與2,500英鎊。在貨車購車補助方面,每年將提供1,000位消費者購買大型貨車5,000英鎊或小型貨車2,500英鎊的購車補助,2021年充電貨車計畫的購車補助規模較2020年已成長超過250%。而在電動機車與電動自行車方面,英國政府將對於售價低於10,000英鎊的電動機車與電動自行車分別提供500英鎊及150英鎊的購車補助。 英國政府指出,針對電動車輛的購車補助政策已經逐漸顯現效果,2021年電動汽車的銷售量已經超越2019年與2020年的加總數量,未來政府也將加強對充電基礎設施的建設,針對7.1千瓦以上的充電(包含快速充電)站訂定支付方式基本要求(例如必須具備無接觸支付方式)。英國政府承諾將提供35億英鎊用於支持英國汽車與供應鏈的電動化、電動汽車購車補助與興建基礎設施。
FDA發佈人工智慧/機器學習行動計畫美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。 2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。 根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。