歐盟執委會提出欲修正歐盟「地理標示」制度之提案,新增對於工藝品和工業產品之保護

  歐盟執委會(European Commission, EC)於2022年4月13日提出欲修正歐盟「地理標示」(Geographical Indication, GI)制度之提案(Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on geographical indication protection for craft and industrial products and amending Regulations (EU) 2017/1001 and (EU) 2019/1753 of the European Parliament and of the Council and Council Decision (EU) 2019/1754,下稱本提案),擬在歐盟GI制度原僅保護農產品、食品及葡萄酒、蒸餾酒產品外,新增對於工藝品和工業產品之保護。

  所謂工藝品和工業產品如義大利的穆拉諾玻璃(Murano glass)、愛爾蘭的多尼戈爾花呢(Donegal tweed)和波蘭陶(Boleslawiec pottery)等,皆係源於特定地區,產品品質和相關特色皆係依於原產地技藝之原創性及傳統作法。儘管此等產品在歐洲或全世界享有不錯聲譽,其製作者一直以來卻未能享有歐盟層級GI的保護,以更可將其原產地名與聲譽、品質相連結。

  本提案將使消費者更易於辨識該等產品之品質,以可在更得知產品資訊的狀況下,作出消費選擇;亦可宣傳各原產地的技術工藝,使當地技藝被保存,並創造工作機會,達到經濟成長。

  本提案主要包含:

(1)將工藝品和工業產品納入歐盟GI保護:

將為工藝品和工業產品建立一個橫跨全歐盟的GI保護,而非僅目前部分區域或國家所有者,以更保障製作者之智慧財產權。本提案亦將促進打擊仿冒品的行為,包含在網路上所銷售者。

(2)為工藝品和工業產品的GI制度建立經濟的註冊程序:

將建立「兩階段申請程序」,製作者先向其所屬歐盟會員國當局提出申請,再由該當局轉交符合第一階段資格者之資料至歐盟智慧財產局(European Union Intellectual Property Office, EUIPO),以進行評核。

本提案將可使製作者提出「其產品有符合原產地製作特點」的聲明,以使整體註冊程序較簡易且節省成本。

(3)與國際上其它GI保護制度相容:

本提案將使成功取得歐盟GI註冊之工藝品和工業產品製作者可在「關於保護原產地名及GI的日內瓦協定」(Geneva Act on Appellations of Origin and Geographical Indications under the World Intellectual Property Organisation (WIPO))之簽署國實施和保護其產品的權益;蓋此協定亦有包括工藝品和工業產品。而由於歐盟於2019年簽署該協定,故在歐盟境內亦將保護他簽署國工藝品和工業產品之GI。

(4)保存原產地技藝,並造就歐洲鄉村和其他地區的發展:

藉由提供製作者(尤其是中小企業)誘因,以投資於新的原創產品及創造其他利基市場(niche markets)。本提案並將使歐洲若干地區(尤其是鄉村及較低度開發區域)將失傳的技藝得以被保存,因此將可重振其知名度以吸引遊客或創造其他工作機會,達到經濟復甦。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 歐盟執委會提出欲修正歐盟「地理標示」制度之提案,新增對於工藝品和工業產品之保護, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8851&no=645&tp=1 (最後瀏覽日:2025/11/21)
引註此篇文章
科法觀點
你可能還會想看
德國汽車製造商擁有德國境內大部分的自駕車專利

  根據德國專利商標局(Deutsches Patent- und Markenamt)2017年度報告,德國該年境內發明專利申請量達67,707件,僅較2016年下降0.3%(2016年專利申請量達歷年新高),主要領域在交通;而新型專利和設計專利申請量卻持續下降。歷年申請量如下表: (件數) 2017 2016 2015 2014 2013 2012 2011 發明 專利 67,706 67,907 66,898 65,963 63,177 61,361 59,612 新型 專利 13,299 14,030 14,271 14,741 15,470 15,531 16,038 設計 專利 44,297 57,057 58,017 60,837 56,944 55,250 53,197 資料來源:德國專利商標局   其中,德國汽車公司投資在電動汽車、輔助系統和自動駕駛等領域數十億元的成果在發明專利中被充分反映出來。根據德國專利商標局2017年度報告,該年自動駕駛專利申請數量有2,633件,較2016年增加14%,是2013年的兩倍。   在德國4,810件自動駕駛專利中,德國汽車公司就擁有超過2,006件,占42%,日本為28%,美國為11%。僅2017一年,德國汽車公司就取得325件自動駕駛專利,較日本公司259件、美國公司112件和法國公司的41件還多。其中絕大多數被Audi、Toyota和Volkswagen所擁有。   此外,德國境內電動汽車專利申請也增加10%,總數達到3,410件,超過三分之一是用於蓄電池和燃料電池,德國汽車公司高居專利申請量榜首,其中以Bosch和Schaeffler為最。   事實上,除了在德國境內,全球自動駕駛專利幾乎一半亦為德國汽車公司所擁有,截止至2017年底,占了48.8%,其中Bosch排名第一,共擁有1,101件專利。前十名專利擁有者如下圖: 單位:件 資料來源:德國經濟研究所(Institut der deutschen Wirtschaft) 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

美國提出壟斷威攝法案

  美國參議院在2019年7月23日,於第116屆國會中審查了兩次「壟斷威攝法案」(The Monopolization Deterrence Act),相當於台灣法案經過二讀。提出者是參議院司法委員會反托拉斯、競爭政策和消費者權益小組之成員,克洛布查爾,他認為聯邦執法人員發現非法壟斷行為之時,需要採取果斷行動以確保制止這種行為,但僅僅是禁制令不足以阻止這種非法行為的發生,尚需更好的立法。   本法將賦予司法部和聯邦貿易委員會權利,對壟斷犯罪尋求懲罰性罰款,其目的係為司法部和聯邦貿易委員會提供額外的執法工具,針對個別違規行為制訂補救措施,平衡其嚴重的犯行,並希冀能有效制止未來之非法行為。原法律規定個人違反最高可罰一百萬美元,企業最高可以罰一千萬美元,國會調查後認為原法律規定之罰款不足以阻止壟斷行為,因為獲利可能比罰款更多。   有關「壟斷威攝法案」之修正內容大略包含: 每個違反本條規定的人,必須負擔民事罰款,該罰款不大於個人上一年度在美國的總收入中的15%。從事非法行為之期間,所有交易、貿易行為收入的30%。 委員會針對以不正當方法競爭違反謝曼爾法案第二條的個人、合夥企業或公司,可以在美國地方法院提起民事訴訟,並對此種行為處以民事罰款。 任何個人、合夥企業或公司被發現違反了謝曼爾法案第二條,其民事罰款不大於個人、合夥企業、公司上一年度在美國的總收入的15%。從事非法行為之期間,與非法行為有關之商業活動中之個人、合夥企業或公司在美國之總收入的30%。 在聯合民事處罰準則中,有規範總檢察長和聯邦貿易委員會在計算民事罰款時,必須考慮之相關因素,有以下七項,其一,受影響的商業量;其二,違法行為的持續時間和嚴重性;其三,為隱瞞違法行為而採取或試圖採取之任何行動;其四,違法行為嚴重或明顯違法之程度;期五,是否將民事處罰與針對違法行為之其他救濟相結合,包括結構性救濟、行為條件、非法所得之歸還;其六,先前是否曾從事過相同或類似之反競爭行為;其七,是否違反先前之法令或法院命令該為之行為。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

簡介美國FTC垃圾電郵法制施行成效報告

TOP