歐洲議會表決通過碳邊境調整機制草案之議會版本,增修管制範圍、施行時間、主管機關和收入利用等規範

  歐洲議會於2022年6月22日表決通過碳邊境調整機制(Carbon Border Adjustment Mechanism, CBAM)草案之議會版本,為該次決議通過三項草案中之一項,而包含CBAM在內之三者皆屬歐盟去年7月所公布「Fit for 55」溫室氣體減量包裹法案中的一部份,正式施行後將要求進口商向歐盟購買「CBAM憑證」,繳交進口產品對應之碳排放量費用,希望促進非歐盟國家減少碳排放以及防止碳洩漏(carbon leakage)的風險,並避免氣候政策不積極國家的企業擁有不公平優勢,以進一步降低全球碳排放。而在此次議會通過之版本中,有幾點作了調整:

(1)擴大管制範圍:在產品方面,除原先歐盟執委會所提出之水泥、鋼鐵、鋁、肥料及電力等5大類產品外,歐洲議會亦希望納入有機化學品、塑膠、氫氣和氨等產品。為確保順利實施,委員會將對有機化學品和聚合物進行技術特性之評估;同時歐洲議會也計畫將管制擴大至間接排放,即包含製造商使用電力所產生之排放,以更能實際反映歐洲工業的二氧化碳成本;

(2)逐步實施CBAM並提前終止歐盟排放交易系統(Emissions Trading Scheme, ETS)的免費配額:CBAM預計從2023年1月1日開始試運行,原草案規劃試運行至2025年底,現延長至2026年底;在2023年至2026年過渡期間,歐盟出口商保有100%的歐盟ETS免費配額;而自2027年起則正式施行向進口至歐盟產品之碳含量進行定價,並要求進口商購買與繳交相對應之CBAM憑證。雖然出口商仍有ETS免費配額,但該配額將逐步遞減,並於2032年之前終止免費配額制度,由CBAM完全取代之,以避免對歐盟產業有雙重保護的情形;

(3)設立CBAM集中管理機構:歐洲議會認為與其在各會員國內分別指派共27個個別之主管機關(competent authorities),應設立歐盟單一機構集中管理,以提升實施效率、透明度及成本效益;同時,也可避免第三國進口商在各會員國間因管制密度之差異而有挑選法院(forum shopping)的情況;

(4)CBAM收入之應用:歐洲議會建議CBAM之收益應歸入歐盟預算,以對最低度開發國家(LDCs)提供至少相當於CBAM收入的財務援助,協助其製造業脫碳,以共同落實歐盟氣候目標,以及《巴黎協定》等國際承諾。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 歐洲議會表決通過碳邊境調整機制草案之議會版本,增修管制範圍、施行時間、主管機關和收入利用等規範, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8864&no=64&tp=1 (最後瀏覽日:2025/12/06)
引註此篇文章
你可能還會想看
美國聯邦通訊委員會新通過的隱私規範

  這是客戶的資訊,該資訊如何被使用應為客戶的選擇。」於此一理念下,美國聯邦通訊委員會(Federal Communication Commission,FCC)於2016年10月27日通過了寬頻客戶隱私規定(Broadband Consumer Privacy Rules),該規定要求寬頻網路服務提供者(broadband Internet Service Providers,ISPs)應保護其客戶之隱私,該新通過的隱私規範非禁止使用及分享客戶的資訊,而係給予客戶有更多的選擇去決定自身的資訊該如何被分享及使用。以下簡介規範內容: 一、規範對象:寬頻網路服務提供者及其他電信營運商,例如Comcast、Verizon、AT&T等。規範對象未包含聯邦貿易委員會(Federal Trade Commission,FTC)所管轄的隱私保護措施下的網站或其他邊緣服務商(edge service),例如Google、Facebook、Amazon等。亦未規範寬頻網路服務提供者營運的社交媒體網站或政府監管、加密,執法等問題。 二、 主要規範內容:將ISP所蒐集得使用及分享的資訊分為三類,建立客戶同意要件,分類如下。 (一)敏感性資訊須事前取得客戶肯定地選擇同意加入(opt-in),才得為使用及分享。敏感性資訊包含精確的地理位置、金融資訊、健康資訊、孩童資訊、社會安全碼、網站瀏覽紀錄、app使用紀錄及通訊內容。 (二)非敏感性資訊,例如電子郵件地址或服務層資訊,得使用及分享,惟當客戶選擇退出(opt-out)則不得使用及分享。 (三)同意要件之例外。除了在建立客戶與ISP關係外,針對特定目的將會被推定為已取得客戶同意,包含寬頻服務之提供或針對服 三、 其他重要規範內容:清楚告知客戶收集的資訊、將如何使用、向誰分享;實施合理的資料安全準則;保密性違反之通知。   然而針對FCC是否具有相關管制權限,質疑聲浪仍存於本次規範之通過。亦有認為該規範與FTC的管制同時運行將形成疊床架屋,造成社會大眾之混淆。並且該規範未能真實反映網路生態,未將網路公司或社交網站公司列入管制對象,無法真正保護客戶隱私。

世界經濟論壇發布《贏得數位信任:可信賴的技術決策》

  世界經濟論壇(World Economic Forum, WEF)於2022年11月15日發布《贏得數位信任:可信賴的技術決策》(Earning Digital Trust: Decision-Making for Trustworthy Technologies),期望透過建立數位信任框架(digital trust framework)以解決技術開發及使用之間對數位信任之挑戰。   由於人工智慧及物聯網之發展,無論個人資料使用安全性還是演算法預測,都可能削弱人民對科技發展之信賴。本報告提出數位信任路線圖(Digital trust roadmap),說明建立數位信任框架所需的步驟,以鼓勵組織超越合規性,指導領導者尋求符合個人與社會期望之全面措施行動,以實現數位信任。路線圖共分為四步驟:   1.承諾及領導(commit and lead):數位信任需要最高領導階層之承諾才能成功,故需將數位信任與組織戰略或核心價值結合,並從關鍵業務領域中(例如產品開發、行銷、風險管理及隱私與網路安全)即納入數位信任概念。   2.規劃及設計(plan and design):透過數位信任差距評估(digital trust gap assessment)以瞭解組織目前之狀態或差距,評估報告應包括目前狀態說明;期望達成目標建議;治理、風險管理與合規性(governance, risk management and compliance, GRC)調查結果;將帶來之益處及可減輕之風險;計畫時程表;團隊人員及可用工具;對組織之影響等。   3.建立及整合(build and integrate):實現數位信任需關注人員、流程及技術等三大面向。首先需確保人員能力、達成該能力所需之資源,以及人員溝通與管理;第二,定義組織數位信任流程,包括制定計劃所需時程、預算及優先實施領域,調整目前現有管理流程,並識別現有資料資產;最後,針對技術使用,可考慮使用AI監控、雲端管理系統以及區塊鏈等,以監測資料之使用正確性及近用權限管理。   4.監控及滾動調整(monitor and sustain):建立數位信任框架後,需持續建構相關績效及風險評估程序,以確保框架之穩定,並根據不斷變化的數位信任期望持續改善,以及定期向董事會報告。

日本內閣官房提出法案規範醫療個資去識別化業者,以促進研發利用

  日本內閣官房所屬之健康‧醫療戰略室於2017年3月, 向國會提出《有助醫療領域研究開發之匿名加工醫療資訊法律案》(医療分野の研究開発に資するための匿名加工医療資訊に関する法律案)。「健康‧醫療戰略室」係於2013年2月成立,並於同年8月根據《健康‧醫療推進法》設置「健康‧醫療戰略推進本部」。該部於2017年3月10日提出《有助醫療領域研究開發之匿名加工醫療資訊法律案》,針對醫療資訊匿名加工業者進行規制,使他人可安心利用經過去識別化處理之資訊,以便促進健康、醫療方面之研究及產業發展,形成健康長壽社會。上開法案主要可分為兩個部份︰ 國家責任與義務︰政府應提出必要政策與制定基本方針。 匿名加工醫療資訊業者之認定︰該部份又可分為匿名加工醫療資訊業者(以下簡稱業者)之認定與醫療資訊處理。   針對上述第2點之認定,為確保資訊安全,政府應設置認定機構,以便確認業者符合一定基準,並具備足夠之匿名加工技術,可為醫療個資去識別化。此外,在醫療資訊處理方面,該法案則規定醫療機關可在事先告知本人,且本人未拒絕提供時,將醫療資訊提供給業者。

全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任

全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。

TOP