瑞士洛桑國際管理發展學院公布《2022年IMD世界競爭力年報》

  瑞士洛桑國際管理發展學院(International Institute for Management Development, IMD)於2022年6月15日公布《2022年世界競爭力年報》(IMD World Competitiveness Yearbook)(以下簡稱本報告)。本報告以「經濟表現」(Economic Performance)、「政府效能」(Government Efficiency)「企業效能」(Business Efficiency)和「基礎建設」(Infrastructure)四大指標(含333項子標)評比63個經濟體。評比結果:全球競爭力前5名依序為丹麥、瑞士、新加坡、瑞典與香港;而其他重要經濟體之排名,如臺灣第7、美國第10、中國第17、南韓第27與日本第34。

  丹麥34年來首次位列第一,去(2021)年居首的瑞士則跌至第2名。究其原因,丹麥因公共債務與政府赤字的減少,其「經濟表現」大幅提升。至於新加坡,雖於2019年與2020年皆居於榜首,去年則滑落至第5名。對此,IMD主管Arturo Bris表示,新加坡嚴格的防疫政策,限制了國際服務與人員流動,致使去年的全球競爭力排名下滑。然新加坡今年排名上升係因「經濟表現」強勁,其「國內生產總值」增長,「國內經濟」、「國際貿易」和「科技基礎建設」等子標皆位居全球第一,但「經營管理」卻排名第14、「科學基礎建設」排名第16、「健康與環境」更排名第25,仍處於相對較後的位置。若欲提升排名重回榜首,新加坡政府需設法應對外部經濟發展所帶來的挑戰(如全球供應鏈中斷、商品價格上漲等)、協助仍受COVID-19疫情影響的行業復甦經濟,並幫助企業走向低碳未來等永續發展方面作改善。

  而我國,由去年第8名進步至今年第7名,突顯我國在全球COVID-19疫情肆虐之情況下,整體競爭力仍獲國際肯定。政府亦將以本報告之評比結果為鑒,協助企業加強全球布局,並積極推動前瞻基礎建設、六大核心戰略產業、2050淨零排放等產業轉型升級,期盼能持續提升我國競爭力。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 瑞士洛桑國際管理發展學院公布《2022年IMD世界競爭力年報》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8882&no=67&tp=1 (最後瀏覽日:2025/10/29)
引註此篇文章
你可能還會想看
歐盟議會發布《可信賴人工智慧倫理準則》

  2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下: 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。  問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。

美國FDA發布於海內外應對2019年新型冠狀病毒之行動聲明

  美國食品及藥物管理局(Food and Drug Administration, FDA)於2020年2月14日,發布於海內外應對2019年新型冠狀病毒之行動聲明,其包括: 主動監控供應鏈:由於疫情可能影響醫療產品供應鏈,FDA已與數百家藥品與醫療器材製造商保持聯繫,並與歐洲藥品管理局等全球監管機構保持同步,以評估監控潛在之製造中斷的警訊,且與生物製劑製造商聯繫,以評估有關原料之供應問題。若FDA確定醫療產品可能會短缺,則可能會採取與製造商緊密合作、加快對替代供應之審查等措施來防止短缺。 針對海外生產之FDA產品合規性之查驗與監控:FDA採取基於風險之模型來確認要進行查驗之公司,基於某些特定條件,會被認為具有較高風險之場所會被優先查驗,這些條件包括固有之產品風險、患者接觸產品之程度、過去查驗之歷史紀錄等等。除了查驗之外,其他防止不符FDA標準之產品進入美國市場之工具包括進口警示、增加進口採樣與篩查、替代查驗之紀錄要求(requesting records)。FDA可對市場上不合法之產品或違法之公司或個人採取監管與強制措施,例如警告信、扣押或禁制令。 消費品安全:美國海關暨邊境保護局將輸入美國、受FDA監管之產品交由FDA審查,其必須遵守與美國國內產品相同之標準,在FDA決定其可接受性之前不得將其分銷至美國。FDA並成立跨機關之專案小組,密切監控聲稱可預防、治療或治癒新型冠狀病毒疾病之詐欺性產品和虛假產品,並採取可能之執法行動。 對於診斷、治療與預防疾病之努力:FDA致力於促進安全有效之醫療對策的發展,提供法規建議、指導和技術援助,以促進針對用於此病毒之疫苗、治療和診斷測試之開發和可用性。FDA已核發緊急使用授權(Emergency Use Authorization, EUA),以便立即使用由美國疾病管制與預防中心所開發之診斷試劑,並已制定用於檢測病毒之EUA審查範本,其中概述申請EUA前所需之資料要求,目前已提供給表示有興趣開發該病毒之診斷工具之多位開發者。 後續行動:FDA將密切監視疫情並與跨部門合作夥伴、國際合作夥伴、醫療產品開發商與製造商合作,以幫助推進針對病毒之應對措施。

經濟部預告試辦自願性綠色電價計畫(草案)

避免昂貴訴訟成本,微軟參與專利審查團隊

  微軟成為crowdsourcing(集結式資訊來源)服務的第一會員,其服務用於對抗專利流氓(patent trolls)所提出昂貴的訴訟,挑戰將訴訟中所使用的軟體專利使之無效。   Litigation Avoidance是由全球線上社群100萬名科學家及技術人員所組成的Article One Partners所建立的一種付費服務。該組織採用crowdsourcing,其為透過網際網路所採用的一種社交媒體工具,藉由找出前案或先前揭露資料中證明專利無效之證據。而Article One所取得的利潤是由使用crowdsourcing資訊的企業而來的,但並未對外揭露收費的價格。   根據Article One指出,Litigation Avoidance主要針對的目標是專利流氓,其為購買大量專利,透過所買的專利向其他企業提出訴訟,進而要求權利金或授權金。   受到專利流氓提出訴訟的微軟指出,Litigation Avoidance服務將是應訴前調查專利品質的另一種工具。微軟首要專利律師Bart Eppenauer說明,”使用Litigation Avoidance服務其目的為降低風險及降低潛在的訴訟成本”。   Article One試圖解決問題之一,為crowdsourcing技術可於數周內得到專利評估結果,可取代需花費數月或數年始得產生結果的美國專利商標局低效能的專利審查系統。

TOP