德國聯邦藥品暨醫療器材管理署(Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM)於2022年3月18日發布3.1版《數位健康應用程式指引》(Digitale Gesundheitsanwendungen(DiGA) Leitfaden),主要針對3.0版未詳盡之「系統數據分析」(Systematische Datenauswertung)部分作補充說明(參考資料四,頁152以下)。
德國於2019年12月即透過《數位化創新醫療服務法》(Digitale-Versorgung-Gesetz, DVG)修訂《社會法典》第五編(Sozialgesetzbuch Fünftes Buch, SGB V)關於法定健康保險之規定,賦予數位療法(Digital Therapeutics, DTx)納保給付的法律基礎,BfArM並透過《數位健康應用程式管理辦法》(Digitale Gesundheitsanwendungen-Verordnung – DiGAV)建構處方數位療法(Prescription Digital Therapeutics, PDT)的管理架構並發布DiGA指引,使數位療法得以快速被納入法定健康保險給付範圍。
開發商之數位健康應用程式取得歐盟醫療器材規則(Medical device regulation, MDR)CE Mark I & IIa級認證之後,得向BfArM提交申請,若該應用程式「符合法規要求」(Anforderungen),並具有「積極醫療效果」(Positive Versorgunseffekte),則該應用程式最快可以在三個月取得永久許可,通過許可將被列入DiGA目錄(DiGA-Verzeichnis)當中;而若僅「符合法規要求」則會被暫時收錄,需在十二個月內補上「積極醫療效果」的證據或報告,以取得永久許可,否則會從DiGA目錄中刪除。DiGA目錄中的應用程式(包含臨時許可)會納入單一支付標準(Einheitlicher Bewertungsmaßstab, EBM),法定健康保險將依該標準表列之金額給付給製造商。
目前DiGA目錄上共有36款應用程式,當中13款取得永久許可、19款取得臨時許可、另有4款被刪除;三分之一的應用程式係用於治療焦慮或憂鬱等精神疾病,其他尚包括治療耳鳴或肥胖症等疾病。病患近用DiGA目錄中之應用程式的途徑有二:透過醫師開立處方,或是依照醫師診斷之病症自行在DiGA目錄中查找對應的應用程式後提交處方申請。法定健康保險將會依照該應用程式被使用之次數,對照EBM所列之價額後,給付費用予開發商。
本文同步刊載於stli生醫未來式網站(https://www.biotechlaw.org.tw)
「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
OECD:汙染性能源稅收過低無法激勵低碳轉型經濟合作與發展組織(OECD)2019年9月20日根據《2019年能源使用稅(Taxing Energy Use 2019)》報告指出,汙染性能源會造成地球與人類健康的危害,而課徵「汙染性能源稅」是降低其排放的有效方法,且稅收尚可用於協助低碳轉型,但在報告所研究的44個國家能源排放量佔全球80%以上,與能源有關的二氧化碳排放中卻有70%未徵稅,課徵的汙染燃料稅過低,無法促使其改用較為清潔的能源(cleaner energy),而無法鼓勵低碳能源轉型。 能源稅中,道路燃料稅相對較高,但無法反映其造成環境損害的成本;煤炭稅在多數國家中幾乎為零,但煤炭的碳排放幾乎佔了能源碳排放的一半;天然氣是較為潔淨的能源,其稅收通常較高。在非道路的能源碳排放中,有97%被徵稅,但44個國家中只有4個國家(丹麥、荷蘭、挪威、瑞士)的徵稅在每噸30歐元以上,遠低於環境損害的程度,近年來甚至有國家降低能源稅。 該報告表示,改善稅收政策、為低碳技術提供公平的機會,將有助於將投資轉向更環保的選擇,且額外的稅收可用於社會目的,例如降低所得稅、增加基礎設施或醫療健保支出,OECD未來將衡量減排與其他社會目標(如健康與工作),採取有效的激勵措施減少碳排放,並呼籲各國政府應正視此一問題。
歐盟啟動2030年提升建築能源效率合作創新研究為有效達成「歐洲2020策略」以及「歐洲2050減碳」等政策目標,由歐盟所補助設立的歐洲建築科技平台(European Construction Technology Platform, ECTP) 其下能源效率建築協會(Energy Efficient Buildings Association, E2BA),於今年度 (2012) 7月份正式對外發布首份創新研究報告「前瞻建築能源效率之研究–創新及公私部門合作」(Energy-efficient Buildings PPP beyond 2013)。該研究報告開宗明義指出,將規劃於2030年透過創新模式,及公私部門合作之落實,建立一個創新高科技能源效率產業,達到建築物碳中和(Carbon Neutral)、提昇產業技術、創造新工作機會以及落實智慧城市計畫等目標。 本研究報告係從「市場」(Market)的角度出發,嘗試提出具可行性之商業模型(Business model),供決策者參考。有鑒於建築產業在能源消耗及碳排放量占有很大的比例,該報告即指出對於既有建築物翻新與整修之急迫性,也認為應該透過政府部門介入,推動相關措施,並導引民間持續落實。其次,於產業評估效益方面,該報告明確指出,透過提昇建築能源效率,將創造許多新的就業機會,帶動地方經濟發展。綜上,歸納二點供參考,第一,為達成長期能源效率提升之目標,公部門將寄出管制手段並設置公共基金(Public funding),以防止產業市場失靈,有其必要性;第二,產業等實務運用契約型態將歷經質變,長期性的節能績效保證契約(Long-term energy performance guaranteed contract)將被越來越常被引用。 適逢歐洲議會通過能源效率指令(Energy Efficiency Directive),指令中第四條係針對公有建築物翻新之規範條款,對此歐盟會員國已陸續檢討各自國內推動現況,但目前各國仍面對許多問題及挑戰,例如既有建築物翻新整修,一直無法有效提昇件數,以及投入資金過於龐大等等因素,除非政府展現積極介入的決心,支持及並投入資金協助推動,否則成效仍可能維持停滯不前的困,相關趨勢發展值得後續觀察。
品牌永續發展之關鍵-從商標維權使用角度觀之