《演算法問責法案》(Algorithmic Accountability Act)於2022年4月由美國參議院提出,此法案係以2019年版本為基礎,對演算法(algorithm)之專業性與細節性事項建立更完善之規範。法案以提升自動化決策系統(automated decision systems, ADS)之透明度與公平性為目的,授權聯邦貿易委員會(Federal Trade Commission, FTC)制定法規,並要求其管轄範圍內之公司,須就對消費者生活產生重大影響之自動化決策系統進行影響評估,公司亦須將評估結果做成摘要報告。
《演算法問責法案》之規範主體包括:(1)公司連續三年平均營業額達5000萬美元,或股權價值超過2.5億美元者,並處理或控制之個人資料超過100萬人次;以及(2)公司過去三年內,財務規模至少為前者之十分之一,且部署演算法開發以供前者實施或使用者。ADS影響評估應檢視之內容包括:
1.對決策過程進行描述,比較分析其利益、需求與預期用途;
2.識別並描述與利害關係人之協商及其建議;
3.對隱私風險和加強措施,進行持續性測試與評估;
4.記錄方法、指標、合適資料集以及成功執行之條件;
5.對執行測試和部署條件,進行持續性測試與評估(含不同群體);
6.對代理商提供風險和實踐方式之支援與培訓;
7.評估限制使用自動化決策系統之必要性,並納入產品或其使用條款;
8.維護用於開發、測試、維護自動化決策系統之資料集和其他資訊之紀錄;
9.自透明度的角度評估消費者之權利;
10.以結構化方式識別可能的不利影響,並評估緩解策略;
11.描述開發、測試和部署過程之紀錄;
12.確定得以改進自動化決策系統之能力、工具、標準、資料集,或其他必要或有益的資源;
13.無法遵守上述任一項要求者,應附理由說明之;
14.執行並記錄其他FTC 認為合適的研究和評估。
當公司違反《演算法問責法案》及其相關法規有不正當或欺騙性行為或做法時,將被視為違反《聯邦貿易委員會法》(Federal Trade Commission Act)規定之不公平或欺騙性行為,FTC應依《聯邦貿易委員會法》之規定予以處罰。此法案就使用ADS之企業應進行之影響評估訂有基礎框架,或可作為我國演算法治理與人工智慧應用相關法制或政策措施之參酌對象,值得持續追蹤。
鑒於「監管不確定性」係加密貨幣市場發展之一大阻礙,2018年間,美國證券交易委員會(United States Securities and Exchange Commission, SEC)成員威廉.希曼(William Hinman)表示,SEC打算發布指導方針,協助市場參與者確認「哪些數位資產之發售,會被認為是投資契約,進而構成證券」,須受到相關證券法規監管。據此,2019年4月3日,SEC公布指導文件:「數位資產之投資契約分析框架」(Framework for “Investment Contract” Analysis of Digital Assets)。惟須注意的是,該文件為內部成員之意見,不具正式法律效力,不得拘束SEC企業財務局或委員會本身,而僅屬一種指導。 美國法上對於「投資契約」的認定標準,為聯邦最高法院建立的Howey Test,即基於合理的獲利預期、且該獲利來自他人的創業或經營努力、而投資金錢於一共同事業者,成立投資契約,進而構成證券。因此,為確認「哪些數位資產之發售,會被認為是投資契約,進而構成證券」,該文件特別針對「Howey Test」中的「基於合理的獲利預期」、「該獲利來自他人的創業或經營努力」,提出具體判斷標準,並輔以「其他相關考量因素」,供市場參與者作一參考: (一)基於合理的獲利預期:例如「數位資產持有人可否分享企業收入或利潤,或從數位資產的增值獲得利潤」、「持有人現在或未來得否在次級市場交易」等具體標準; (二)該獲利來自他人的創業或經營努力:例如「營運上是否去中心化」、「數位資產持有人,是否期待發行人執行或管理必要工作」等具體標準; (三)其他相關考量因素:包含「數位資產之設計和執行,旨在滿足使用者需求,而非投機買賣」、「數位資產的價值,通常會保持不變或隨時間減損,理性持有人不會『以投資為目的』而長期持有」、「數位資產可作為真實貨幣之替代物」等等,文件中指出,只要這些其他相關考量因素越明顯,越不符合上開「基於合理的獲利預期且該獲利來自他人的創業或經營努力」。 文件中亦強調,SEC將參酌個案事實,綜合上開各項標準,為客觀之認定。
英國上訴法院法官對軟體專利之必要性表示懷疑英國上訴法院智慧財產法專業法官Robin Jacob於2006年1月13日對是否應該核發軟體專利感到懷疑,並對美國專利法所奉行的原則-「任何在陽光下由人類所創造之物,皆可以被賦予專利」-表示不能茍同。該法官認為,從美國軟體專利實務在搜尋既存技術(Prior Art)時之遭遇來看,將專利核發予事實上僅具一般性效能之軟體,為軟體專利不可避免的現象,如此一來,在搜尋既存技術的過程中將產生極大問題。 軟體專利存在的必要性一直受到以「自由資訊基礎建設基金會」(the Foundation for a Free Information Infrastructure,簡稱FFII)為首之社會運動團體之懷疑,但截至目前為止仍極少有針對此一爭議的研究。歐洲委員會為此補助一個「以法律、技術與經濟層面切入探討軟體專利對創新之影響」的研究計畫,惟該計畫需待2007 年方能有所成果。無獨有偶,歐洲議會於2005年7月駁回「軟體專利指令」(全名:the directive on the patentability of computer-implemented inventions,俗稱software patent directive),理由是,該指令之通過將造成歐洲軟體專利與美國一樣過度氾濫的窘境。
歐盟議會發布《可信賴人工智慧倫理準則》2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下: 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。 問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。