美國總統拜登簽署《降低通膨法案》,通過美國史上最大氣候變遷支出法案

  為遏止通貨膨脹惡化以及應對全球氣候變遷問題,美國總統拜登(Joe Biden)於2022年8月16日簽署通過4,370億美元支出的《降低通膨法案》(The Inflation Reduction Act),約3,690億美元將用於減少二氧化碳的排放以及實現綠色環保的目標。

  法案著重在潔淨能源(CLEAN ENERGY)、醫療保健(HEALTH CARE)以及稅制改革(TAXES)三大面向。其中,關於潔淨能源(CLEAN ENERGY)部分,根據該法案,美國政府將提供優惠政策,鼓勵美國家戶節約能源以及推動潔淨能源經濟產業的發展。

  將提供補貼給購買電動汽車、節能家電以及安裝住宅太陽能發電系統的家戶,以提倡綠色環保。符合條件的家庭或個人,購買二手電動汽車將可獲得4,000美元的稅收抵免,若是購買新的電動汽車甚至可獲得高達7,500美元的減稅額度。不過必須留意的是,由於法案要求受惠條件必須包含電動汽車的零件是在美國製造組裝,車輛電池關鍵材料來源以及車輛售價也都有嚴格特定要求,因此並非所有的電動汽車都符合7,500美元的稅務補貼資格。又,購買節能家電的家庭,可獲得1萬4000美元的消費折抵。至於安裝住宅太陽能發電系統的家庭則可享30%的減稅額度。綜上,預估每年可替利用潔淨能源的家庭節省500至1,000美元的能源支出。

  法案同時推動潔淨能源經濟產業的發展,預測至2030年之前,將增設9.5億塊太陽能板、12萬台風力發電機以及2300家電池儲能廠。此外,超過600億美元的投資,將為國內潔淨能源產業創造數百萬個就業機會。

  透過《降低通膨法案》,將可望降低通貨膨脹、減少碳排放以及空氣污染,確保美國人民可以在符合最高標準的零排放建築中生活與工作,從而提升生活品質並兼顧環境永續發展。

相關連結
※ 美國總統拜登簽署《降低通膨法案》,通過美國史上最大氣候變遷支出法案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8918&tp=1 (最後瀏覽日:2026/02/22)
引註此篇文章
你可能還會想看
銜接實體與虛擬的新票據交換制度-美國二十一世紀支票交換法

歐盟MiCA擬於2024年生效並適用於規範NFT

  歐洲理事會在2022年10月5日公告歐盟加密資產市場監管法(The Markets in Crypto Assets regulation bill, MiCA)草案最終條文內容,此份草案已經歐洲議會眾議員通過並提交歐洲議會經濟貨幣事務委員會(European Parliament Committee on Economic and Monetary Affairs),MiCA將於2023年年初公告於歐盟官方公報,並於2024年生效施行。MiCA屬於歐盟數位金融政策(Europe’s Digital Finance Strategy)之一環,立法目的為統一多種加密代幣(crypto token) 發行和交易的法規架構,以保護加密代幣使用者和投資人權益,為歐盟金融法規未涵蓋的加密資產(如:穩定幣)提供法律確定性,及建立歐盟層級的統一規定。值得注意的是,相關規定歐盟目前並未排除適用於非同質的加密貨幣(non-fungible tokens, NFT)。   草案前言第6c點明文,不應考慮「獨特且非同質的加密資產」(unique and non-fungible crypto-asset)的小部分獨特性和非同質性,因為大量以一系列NFT形式發行加密資產應認定是具備同質性(fungibility)之指標。從而,未來在歐盟發行NFT將適用MiCA規定,包含:   一、適用傳統金融機構資金轉帳規則(travel rules),如:確保加密資產交易可被追蹤、得封鎖可疑交易等以達到防制洗錢與打擊恐怖主義融資之目的。   二、NFT作為一種加密資產,該服務供應商必須確認加密資產來源,確保加密資產並未涉及洗錢或恐怖主義融資之風險。   三、應透過NFT服務供應商協助,才能進行用戶間交易和轉帳。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

德國交通部與歐洲道路安全資料工作組簽署多方協議,透過車聯網分享交通狀況資料以提升道路安全

  德國聯邦交通及數位基礎設施部(Bundesministerium für Verkehr und digitale Infrastruktur, BMVI)於2020年12月2日公布與道路安全資料工作組(Data Task Force for Road Safety)成員簽署多方協議,以促進交通資料於道路維運單位、聯網車、智慧基礎設施間傳輸交換,進而透過最新技術識別道路危險狀況,以提升交通安全。   道路安全資料工作組係由歐盟成員國、車輛製造商、相關應用服務提供商所組成的公私合營夥伴關係,其任務為透過政府與產業相關利益者之合作,促進道路安全性資料可跨品牌和跨國界共享,並於公平可靠的合作夥伴關係下,促進公平競爭。   而在多方協議中,歐盟成員國,道路交通管理單位,汽車製造商和供應商以及地圖服務提供商等成員,承諾進行長期資料交換,並於協議中定義如何在安全相關交通資訊(Safety Related Traffic Information, SRTI)生態系統內,以公平、可靠的方式近用相關資料,並規定合作夥伴於SRTI價值鏈中應扮演的角色與責任,和透過分享安全相關的的資料,進而提供安全性服務。而在簽署本協議前,已成功完成可行性研究,在2019年6月至2020年10月間,不斷地測試SRTI系統並交換共數百萬筆資料,包括危險事故現場、暫時性濕滑路面、視野受限、特殊天候狀況等資訊。而在初步測試報告指出,透過上述資料交換,可發出相關危險交通狀況警告,能迅速有效因應各狀況作出適當的決策。

TOP