世界經濟論壇發布《贏得數位信任:可信賴的技術決策》

  世界經濟論壇(World Economic Forum, WEF)於2022年11月15日發布《贏得數位信任:可信賴的技術決策》(Earning Digital Trust: Decision-Making for Trustworthy Technologies),期望透過建立數位信任框架(digital trust framework)以解決技術開發及使用之間對數位信任之挑戰。

  由於人工智慧及物聯網之發展,無論個人資料使用安全性還是演算法預測,都可能削弱人民對科技發展之信賴。本報告提出數位信任路線圖(Digital trust roadmap),說明建立數位信任框架所需的步驟,以鼓勵組織超越合規性,指導領導者尋求符合個人與社會期望之全面措施行動,以實現數位信任。路線圖共分為四步驟:

  1.承諾及領導(commit and lead):數位信任需要最高領導階層之承諾才能成功,故需將數位信任與組織戰略或核心價值結合,並從關鍵業務領域中(例如產品開發、行銷、風險管理及隱私與網路安全)即納入數位信任概念。

  2.規劃及設計(plan and design):透過數位信任差距評估(digital trust gap assessment)以瞭解組織目前之狀態或差距,評估報告應包括目前狀態說明;期望達成目標建議;治理、風險管理與合規性(governance, risk management and compliance, GRC)調查結果;將帶來之益處及可減輕之風險;計畫時程表;團隊人員及可用工具;對組織之影響等。

  3.建立及整合(build and integrate):實現數位信任需關注人員、流程及技術等三大面向。首先需確保人員能力、達成該能力所需之資源,以及人員溝通與管理;第二,定義組織數位信任流程,包括制定計劃所需時程、預算及優先實施領域,調整目前現有管理流程,並識別現有資料資產;最後,針對技術使用,可考慮使用AI監控、雲端管理系統以及區塊鏈等,以監測資料之使用正確性及近用權限管理。

  4.監控及滾動調整(monitor and sustain):建立數位信任框架後,需持續建構相關績效及風險評估程序,以確保框架之穩定,並根據不斷變化的數位信任期望持續改善,以及定期向董事會報告。

相關連結
你可能會想參加
※ 世界經濟論壇發布《贏得數位信任:可信賴的技術決策》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8942&no=64&tp=1 (最後瀏覽日:2026/02/08)
引註此篇文章
科法觀點
你可能還會想看
美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力

2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。

美國FDA公告食品營養強化物添加之指導原則

  添加營養素到一般之食物中,對於維持或增進整體食物之營養品質來說,是一個非常有效率之方式。然而,不當添加或濫用這些外加之營養素,卻可能造成消費者過度或不足攝取某些特定之營養成分,甚至更可能造成某些食物之營養價值有誤導或詐騙消費者之嫌。   美國食品藥物管理局(Food and Drug Administration,以下簡稱FDA)為了統一回應食品廠商、其他聯邦主管機關以及相關學會之問題,針對添加到食物中之必需營養補充品,在2015年11月6日公告了一份指導原則(Questions and Answers on FDA’s Fortification Policy)。本指導原則以Q&A之形式呈現,,列出FDA對於食品營養強化物(Fortification of Foods)政策之態度(並未變更其自1980年代以來對於食品營養強化物之向來立場)以及建議遵循規定。   FDA建議食品營養強化物添加之基本原則如下:校正飲食之缺陷;補充因食物於處理、流通之過程中所喪失之營養素;根據食物整體熱量計算之結果,均衡添加各種食品營養強化物等。   本指導原則僅適用於人類使用之食品,動物用食品並不在其建議範圍內;另外,其亦不適用於嬰幼兒配方或是一般之保健營養品,其僅適用於一般常規之食物,例如:牛奶、果汁、豆漿、麥片、麵包、通心粉、乳瑪琳等。但是要注意,針對一些新鮮的食物或本身即非營養的食物,例如:新鮮蔬菜、魚肉類、糖、甜點、碳水化合物等,並不建議再額外添加食品營養強化物。   另外,只有人體所必須的營養素(essential nutrients)才可額外添加到常規的食品中,亦即所有添加物都須依據膳食營養素參考攝取量(Reference Daily Intakes;RDI)所規定之種類及建議量,做適當的添加;且添加物必須合法且安全。   食品營養強化物之標示,則必須依據食品標示相關法規恰當為之,不可出現會誤導消費者的任何詞彙,也不宜做出任何可以預防營養素缺乏之陳述,因為這麼做可能使消費者誤認有添加物的食品其營養成分較原始食物高。   本指導原則對廠商並無強制力,然要是廠商有違反本指導原則之情形,FDA將會發出警告信,顯示出FDA強烈建議廠商遵守本指導原則之決心。

澳洲於9月初生效《政府負責任地使用人工智慧的政策》(Policy for the responsible use of AI in government)

2024年9月1日,澳洲生效《政府負責任地使用人工智慧的政策》(Policy for the responsible use of AI in government,下稱政策)。澳洲數位轉型局(Digital Transformation Agency,以下稱DTA)提出此政策,旨於透過提升透明度、風險評估,增進人民對政府應用AI的信任。 1. AI之定義 此政策採經濟合作暨發展組織(OECD)之定義:AI系統是一種基於機器設備,從系統接收的資訊進而產出預測、建議、決策內容。 2.適用範圍 (1)此政策適用於「所有非企業的聯邦個體(non-Corporate Commonwealth entities, NCE)」,非企業的聯邦個體指在法律、財務上為聯邦政府的一部分,且須向議會負責。此政策亦鼓勵「企業的聯邦實體」適用此政策。 (2)依據2018年國家情報辦公室法(Office of National Intelligence Act 2018)第4條所規定之國家情報體系(national intelligence community, NIC)可以排除適用此政策。 3.適用此政策之機構,須滿足下列2要件 (1)公布透明度聲明 各機構應在政策生效日起的6個月內(即2025年2月28日前)公開發布透明度聲明,概述其應用AI的方式。 (2)提交權責人員(accountable official,下稱AO)名單 各機構應在政策生效日起90天內(即2024年11月30日前)將AO名單提供給DTA。 所謂AO的職責範圍,主要分為: I.AO應制定、調整其機構採取之AI治理機制,並定期審查、控管落實情況,並向DTA回報;鼓勵為所有員工執行AI基礎知識教育訓練,並依業務範圍進行額外培訓,例如:負責採購、開發、訓練及部署AI系統的人員,使機構內的利害關係人知道政策的影響。 II.當既有AI 應用案例被機構評估為高風險AI應用案例時,通知DTA該機構所認定之高風險AI應用案例,資訊應包括:AI的類型;預期的AI應用;該機構得出「高風險」評估的原因;任何敏感性資訊(any sensitivities)。 III.擔任機構內協調AI的聯絡窗口 IV.AO應參與或指派代表參與AI議題之政策一體性會議(whole-of-government forums)。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

歐盟宣部推動「展望2020」計劃

  歐盟在2013年12月3號正式通過「展望2020」(Horizon 2020)計劃,將在未來7年(2014-2020)之間,在10大領域投入770億歐元發展「尖端科學」(Excellent science)、「領導性工業」(Industrial leadership)與「社會挑戰」(Societal challenges)三大項目,以此承繼歐盟第七期科技研發計畫架構(7th research Framework Programme,FP7)所建立的基石。目前,歐盟在三大項目中,在今(2014)年發展項目分別是: 1.「尖端科學」:歐洲理事會將編列30億歐元,資助頂尖的科學家從事相關研究。此外,歐盟亦將透過獎學金的方式,鼓勵優秀的年輕研究者。 2. 「領導性工業」:透過18億的預算資助歐盟在產業領先的項目,包括是通訊技術、奈密、機器人等產業。 3.「社會挑戰」:歐盟將透過28億元解決2020年可能遇到的七個社會挑戰,例如是衛生、農業、海洋、生物科技、能源、交通、氣候行動、環境、與資源利用等領域。   在各大項目當中,因資通訊(ICT)產業占整體經濟4.8%外、且資通訊的研發設計(Research and Development) 又佔企業整體營收約25%。因此,促使歐盟在「展望2020」在ICT領域發展預算編列,高於歐盟FP746%,藉此加速資通訊技術、知識之革新與發展。至於,今(2014)年ICT在「領導性工業」發展項目中,將朝向以下6點發展: 1.下世代零組件與系統(A new generation of components and system)。 2.先進的計算(Advanced Computing)。 3.未來網際網路(Future Internet) 4.內容技術與資訊管理(Content technologies and information management)。 5.機器人(Robotics) 6.微型、奈米科技、與光電(Micro- and nano-electronic technologies, Photonics)。   綜觀上述六點,除了機器人、微型、奈米科技之新穎性,格外受人注目外,在「未來網際網路」與「內容技術與資訊管理」,亦須值得持續追蹤。在「未來的網際網路」發展上,歐盟將「智慧網路與新穎網路體系」(Smart Networks and novel Internet Architectures)、「先近雲端基礎建設與服務」(Advanced Cloud Infrastructures and Services )與「智慧光學與無線網路技術」(Smart optical and wireless network technologies)列為發展方向。   在「內容技術與資訊管理」上,巨量資料的研究(Big data-research)與創新與社群行銷的整合(Big data Innovation and take-up),則是歐盟未來1年發展項目之一。我國從2010年推動「數位匯流發展方案」(2010-2015年),其中如何促進新興媒體的發展與增加網路間競爭,一直為我國發展重點。因此,我國除了可透過歐盟所推動的「展望2020」為參考,從中思索是否具有政策盲點外,亦可成為2015年後科技政策進行先導計畫。

TOP