美國紐約州長簽署電動車充電樁安裝法案,以實現零碳排放車輛之目標

  2022年11月22日紐約州長Kathy Hochul簽署一項新法案(S.8518A /A.6165A),旨在消除在私人財產上安裝電動車充電樁之障礙,以實現紐約州零碳排放車輛之目標。

  該法案允許民眾在家中安裝充電站,並要求屋主協會(Homeowner Association,HOA,類似我國社區管理委員會)如欲拒絕屋主申請安裝電動車充電樁,須提出書面詳細說明理由,如於 60 天內未提出,除非是因為HOA合理要求其補正資料所致,否則屋主的申請即視為許可。紐約州欲透過該法案提升車主於住處安裝電動車充電樁數量,進而提高電動車使用率。

  紐約州於2021年已立法(A.4302/S.2758)要求自2035年起販售新車皆需為零碳排放車輛,期許至2050年可達85萬輛零碳排放車輛。透過各項電動車相關政策之推動,2021年紐約州電動車銷售量大幅增長,截至2022年9月全州已超過11.4萬輛電動車上路,電動車充電站超過1萬座。

  對此,我國立法院法制局於2022年6月發布「社區設置電動車充電設備問題之研析」報告指出,社區仍應以用電安全第一,不宜強制設置充電樁,現階段宜規定電動車廠商應設置充電設備或更換電池的設施,如要修正「公寓大廈管理條例」強制社區設置電動車的充電設備,建議優先修正「建築法」或「建築技術規則」加強設置該設備安全要求。

相關連結
※ 美國紐約州長簽署電動車充電樁安裝法案,以實現零碳排放車輛之目標, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8954&no=64&tp=1 (最後瀏覽日:2026/02/15)
引註此篇文章
你可能還會想看
香港通過《2021 年個人資料(私隱)(修訂)條例》,「人肉搜索」成為刑事犯罪

  香港立法會於今(2021)年9月29日通過《2021 年個人資料(私隱)(修訂)條例》(The Personal Data (Privacy) (Amendment) Ordinance, PDPO),並於同年10月8日實施。本次修訂主要將「人肉搜索(Doxxing)」行為訂為刑事犯罪、賦予私隱專員對肉搜進行刑事調查及要求停止批露肉搜訊息之權責。   香港政制及內地事務局今5月提議修訂PDPO ,表示這是對抗肉搜的必要手段,2019年民主抗議活動中此行徑相當普遍,許多警察及反對派人士深受騷擾。修訂訊息公開後,Facebook、Twitter及Google等科技公司即透過亞洲互聯網聯盟(AsiaInternet Coalition)表示,倘香港政府修訂PDPO ,美國企業恐因網路惡意分享個資,造成香港員工面臨刑事調查或訴追風險,因而停止在香港的服務。香港行政長官林鄭月娥為紓緩各方疑慮做出回應,表示該修訂案對阻止網路惡意散布個資而言有其必要性,受香港民眾廣泛支持,其並指出社交媒體欠缺監管,包括散播仇警訊息、違反人性行為,導致香港今年7月發生刺傷警員後再自殺的事情。   依PDPO 之修訂條文,任何人未經資料當事人同意而披露他人的個人資料,並有意圖或罔顧是否會導致當事人或其家人蒙受指明傷害,例如滋擾、騷擾、纏擾、威脅或恐嚇,或對當事人或其家人造成身體、心理傷害或財產受損,最高將處5年有期徒刑及一百萬港元罰款。   對此,亞洲互聯網聯盟表示聯盟成員反對肉搜行為,惟PDPO 修訂條文措辭含糊,位於香港的企業及員工可能因用戶肉搜行為而受到刑事調查或起訴,對企業造成不成比例且不必要之回應成本,並恐限制言論自由,單純網路分享資訊的行為亦可能被視為犯罪。聯盟甚至指出:「科技企業要避免遭受這些懲罰的唯一途徑,就是不要在香港進行投資和提供服務」。

美國最高法院判決:向境外供應侵權產品若為單一元件不構成侵權行為

  美國最高法院於2月22日針對Life Technologies Corp. v. Promega Corp.一案作出判決,對於向美國境外供應多元件侵權產品的其中單一元件,並不構成35 U.S.C. 271(f)(以下稱271(f))的侵權責任。   美國醫療生技公司Promega控告同業LifeTech侵害其專利,指稱LifeTech所製造的基因檢測套件中之組裝元件中之DNA聚合酶元件(Taq polymerase)是由美國製造,運送到英國組裝後,再販售至世界各地。Promega認為LifeTech將單一元件輸出至英國組裝的行為,已違反271(f)(1)中的「境外組裝」規定。   該案爭點之一在271(f)(1)之詮釋及適用爭議:「一當事人未經授權自美國向境外供應專利中全部或相當部份("all or a substantial portion")之元件,若元件尚未組合,而在美國境外將主要部分加以組合,如同其在美國境內將該元件組合,應視為侵權者而負其責任。」   地院認為271(f)(1)中的"all or a substantial portion"不符合本案只提供單一元件之情形,判定侵權不成立。不過CAFC認為地院有不當解釋271(f)(1),故認定LifeTech所販售的聚合酶元件符合271(f)(1)規定的"substantial portion"應解釋為"重要的部分",故推翻一審判決,判定侵權成立。   最高法院解讀271(f)(1)時,將其中的"substantial portion"解釋為"大量"或"多的",因此認定所述"單一元件"並不構成271(f)(1)中的"substantial portion",原因為單一元件並非法條所指的"多量"。   最終,最高法院認為,本案被告僅供應"單一元件"在境外組合,因此並不構成35U.S.C.271(f)(1)法條所定義之侵權行為。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

營業秘密與競業禁止-簡評臺灣高等法院台南分院102年度上易字第212號判決

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP