美國國家安全局(National Security Agency, NSA)於2022年11月10日發布「軟體記憶體安全須知」(“Software Memory Safety” Cybersecurity Information Sheet),說明目前近70%之漏洞係因記憶體安全問題所致,為協助開發者預防記憶體安全問題與提升安全性,NSA提出具體建議如下:
1.使用可保障記憶體安全之程式語言(Memory safe languages):建議使用C#、Go、Java、Ruby、Rust與Swift等可自動管理記憶體之程式語言,以取代C與C++等無法保障記憶體安全之程式語言。
2.進行安全測試強化應用程式安全:建議使用靜態(Static Application Security Testing, SAST)與動態(Dynamic Application Security Testing, DAST)安全測試等多種工具,增加發現記憶體使用與記憶體流失等問題的機會。
3.強化弱點攻擊防護措施(Anti-exploitation features):重視編譯(Compilation)與執行(Execution)之環境,以及利用控制流程防護(Control Flow Guard, CFG)、位址空間組態隨機載入(Address space layout randomization, ASLR)與資料執行防護(Data Execution Prevention, DEP)等措施均有助於降低漏洞被利用的機率。
搭配多種積極措施增加安全性:縱使使用可保障記憶體安全之程式語言,亦無法完全避免風險,因此建議再搭配編譯器選項(Compiler option)、工具分析及作業系統配置等措施增加安全性。
因應嚴峻的新冠肺炎,美國專利與商標局(United States Patent and Trademark Office, USPTO)於2020年5月8日公布「COVID-19專利優先審查領航計畫」(COVID-19 Prioritized Examination Pilot Program)。本領航計畫的法源依據是《美國專利法》第1.183條,授權局長在極特殊的狀況下,更改專利審查規則。本專利優先審查領航計畫之重點有二:其一,原本優先審查必須繳交相關的費用,本計畫針對小型或微型機構給予免費優待。其二,優先審查以12個月內完成最終處置(Final Disposition)為目標,並期待在6個月內完成。所謂最終處置包含:寄出核准領證通知(the mailing of a notice of allowance)、寄出最終核駁通知(the mailing of a final Office action)、請求延續審查(the filing of an RCE)、放棄申請(abandonment of the application)、提出上訴通知(the filing of a Notice of Appeal)。 美國專利與商標局局長Andrei Iancu表示:「獨立發明人與小型企業創新能力不亞於大企業,固有必要在對抗大型全球流行疾病給予有利的援助。為此,美國專利與商標局政策上給予小型或微型機構優先審查的程序優待,企盼加速其所提出之新冠肺炎相關的專利審查。」本計畫適用對象僅限於合於條件的小型或微型機構(Small or Micro Entity)。按美國專利審查程序指南(Manual of Patent Examining Procedure, MPEP)第509.02及509.04條,所謂小型機構係指個人、少於500人之公司、非營利組織和大學;微型機構則是指該機構作為申請人或投資人,其前一年年收入,少於美國家庭年收入中位數的三倍。 本專利優先審查領航計畫的專利請求項,必須是美國食品藥品監督管理局(United States Food and Drug Administration, FDA)批准,用以預防或治療新冠肺炎的產品或方法,包含但不限於:試驗用新藥(Investigational New Drug, IND)申請、臨床試驗器材豁免(Investigational Device Exemption, IDE)、新藥申請(New Drug Application, NDA)、生物製劑許可申請(Biologics License Application, BLA)、上市前許可(Premarket Approval, PMA)或緊急使用授權(Emergency Use Authorization, EUA)。
FDA發佈人工智慧/機器學習行動計畫美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。 2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。 根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。
日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書」2017年6月28日日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書-以實現產業整合(Connected Industries)為目標-」。日本政府為能持續推動該國經濟,以建立創新附加價值的產業社會為目標,以實現產業整合並促進創新與競爭環境,於本年度一月至六月召開七次「第四次產業革命競爭政策研究會」,進行日本競爭政策檢討,並於28日發佈第一階段報告書。 本報告中提出四種大數據應用的商業模式,分別為:單獨成長型、附隨應用型、他面活用型與多面展開型四種。單獨成長型著重於產品或服務本身透過資料蒐集應用來改善品質。附隨應用型則除了透過資料搜集以進行產品與服務品質改善以外,亦擴散經驗運用到其他使用者的服務內容改善。他面活用型則透過產品或服務的資料蒐集,運用到其他的領域(例如駕駛資料的蒐集運用到保險費率的計算)。多面展開型則將多種不同的產品與服務的資料取得後綜整分析以能相互提升品質,或應用到新發展的領域。 報告中並提出資料運用對競爭環境影響的三個關鍵步驟。首先是資料本身的影響力,包括資料本身的必要性、資料品質、蒐集成本等。其次為資料蒐集的可能性,因其他競爭者也可能取得相同資料,故應確保資料的稀少性與蒐集能力的差異(與競爭者能區別)。第三是資料運用可能性,應注意資料應用上是否有資金、人才在競爭上的其他限制。
開放科學(open science)開放科學的基本理念,泛指在數位時代的背景下,各類型實驗測量機器獲得大量數據,以及網路行為累積的人類活動記錄,使各領域的研究活動趨向側重資料處理,結合分析工具後,以可閱讀的形式呈現並發表。 開放科學概念應用於行政與制度建立上,主要有兩個面向,其一為政府資助產出科學期刊論文等研究成果的開放取用(open access),意圖解決期刊雜誌訂閱費用過高,導致研究成果流通困難的問題,屬於早期開放科學關注的重點;其二則係使用官方研究資金進行研發時,於研究過程中取得的實驗、觀測及調查之研究資料開放運用,為近期政策與制度性倡議所聚焦,目的為使科學界、產業界以及一般社會大眾得以廣為接收並利用該些研究結果,令政府資金運用的一切成果均能充分回饋給國民與社會,期望藉由研究資料的公開,進一步深化該領域的研究進程、推展跨域研究或企業的產品與服務開發、以及創新活動。 舉例而言,日本內閣府於2018年提出的「統合創新戰略(統合イノベーション戦略)」第二章內,建構了國內開放科學下研究資料管理開放政策之基礎框架,關注伺服器空間內的研究資料保存與管理,與外國研究資料連動以建構巨量知識泉源,讓所有人得以廣泛活用該些研究資料,促成與加速跨領域與跨國境的新創。