近年來,關於「競業禁止條款」之合法性及有效性等,一直是被廣泛討論的議題,在2023年1月5日,美國聯邦貿易委員會(Federal Trade Commission, FTC)發布禁止「競業禁止條款」之提案,並指出依調查結果顯示,其造成勞工薪資降低及壓抑流動性等負面影響,故企業未來可能須透過主張《統一營業秘密法》(Uniform Trade Secrets Act)或《防衛營業秘密法》(Defend Trade Secrets Act)等,以保護營業秘密。同時應值注意者為,有論者提出未來解決方案為企業應推動自動化營業秘密管理系統,而其中一個必要元素是應採取「資料存證」措施,以證明營業秘密存在及擁有。
所謂自動化營業秘密管理系統,即透過工具,對於營業秘密進行「識別」與「評估」,並應對於不具有經濟價值的資訊進行解密。惟為避免增加營業秘密外洩風險,故相關系統應僅留存後設資料。與此同時,為取得盜用營業秘密相關的勝訴裁判,除應留存及保護任何時點的後設資料外,更應採取能夠證明營業秘密存在及擁有之措施,如透過雜湊值或區塊鏈等技術進行「資料存證」,以確保能夠在訴訟上提供必要證據。
最後,近期司法院、法務部、臺灣高等檢察署、內政部警政署及法務部調查局共同規劃與建置「司法聯盟鏈」機制,藉由區塊鏈技術,並結合已通過經濟部智慧財產局審查核准之b-JADE證明標章,明定嚴謹之數位資料管理要求,以期強化數位證據同一性及建立簡便驗真程序。因此,未來企業若落實b-JADE證明標章所定之管理要求,將幫助營業秘密數位資料通過驗真程序。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。
基因資訊醫療運用與業務過失 美國商品期貨交易委員會發布《自願碳額度衍生性金融商品上市指引》,闡述交易所上架自願碳額度衍生性金融商品時所應考量之因素.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 美國商品期貨交易委員會(Commodity Futures Trading Commission, CFTC)於2024年10月15日發布《自願碳額度衍生性金融商品上市指引》(Commission Guidance Regarding the Listing of Voluntary Carbon Credit Derivative Contracts),闡述交易所上架自願碳額度衍生性金融商品時所應考量之因素,旨在推動仍處於發展階段的自願碳額度商品之標準化,以強化其透明度與流動性。本指引認為,決定進行上市交易前應先行考量下列因素: 1.透明度(Transparency):契約應公開碳額度方案(crediting program)與所認證減量專案活動之相關資訊。 2.外加性(Additionality):若無碳額度構成誘因,則其所代表之碳減量或移除將無從發生。 3.永久性與應對反轉風險(Permanence and Accounting for the Risk of Reversal):碳額度方案所核發之碳額度若遭撤銷,應具有充足緩衝儲備(buffer reserve)以替換品質相當之碳額度。 4.穩健量化(Robust Quantification):量化方法應穩健、保守且透明,以確保核發碳額度數量準確反映減排或移除量。 5.治理(Governance):碳額度方案應具備公開治理框架以建構獨立性、透明度及問責制度。 6.追蹤與避免重複計算(Tracking and No Double Counting):碳額度方案應追蹤碳額度之核發、轉讓及註銷,並確保已註銷額度不會再被使用而導致減排或移除量重複計算。 7.第三方確證及查證(Third-Party Validation and Verification):契約應明確記載第三方確證及查證程序,以確保碳額度實物交割符合品質要求,並與自願碳市場最新標準一致。
人工智慧即服務(AI as a Service, AIaaS)人工智慧即服務(AIaaS)之定義為由第三方提供人工智慧(AI)外包服務,其可使個人和公司基於各種目的進行AI相關實驗,同時毋須於初期即大規模投資或承受高度風險。著名之四大AIaaS供應商為Amazon AWS雲端運算服務、Microsoft Azure 雲端運算平台與服務、Google雲服務、以及IBM雲服務。 AIaaS之優點主要有:(1)降低成本:一般公司無須投資軟體、硬體、人員、維護成本以及不同任務之修改成本,AIaaS供應商可供應不同之硬體或機器學習供公司嘗試運用。(2)即用性:AIaaS供應商提供之AI服務為即用性,無須太多專家介入修改即可使用。(3)可擴展性:可由較小之項目開始試驗,逐步擴張調整服務,因此具有戰略靈活性。然而,AIaaS亦有以下潛在缺點:(1)降低安全性:公司必須交付大量資料給AIaaS供應商,因此資料之機密保護與預防竄改即為重要。(2)增加依賴度:若發生問題時,必須等待AIaaS供應商進行處理。(3)降低透明度:由於是即用性之AI服務,對於內部演算法之運作則屬於未知之黑盒子領域。(4)限制創新:因AIaaS供應商所供應之AI服務需一定程度之標準化,因此限制公司創新發展之可能。