美國總統拜登(Joe Biden)於2023年1月10日首次發布「交通運輸業去碳藍圖」(The U.S. National Blueprint for Transportation Decarbonization),致力於2050年前達成交通運輸業淨零碳排目標。
交通運輸業碳排放占美國碳排放總量三分之一,是二氧化碳的主要排放源,有鑒於此,是美國淨零路徑的優先重點對象。「交通運輸業去碳藍圖」是以《跨黨基礎建設法》(Bipartisan Infrastructure Law)和《降低通膨法案》(The Inflation Reduction Act)作為依據,這兩部法律代表美國願意對建立一個更安全、更永續的交通系統而做了歷史性投資。本藍圖由美國能源部、運輸部、住宅與都市發展部以及環保署共同訂定,列出交通運輸業整體淨零轉型的重要方向與架構,具體體現拜登政府力抗氣候變遷,誓言2035年達到100%潔淨電能、2050年實現淨零碳排放的目標。
藍圖提出交通運輸業去碳策略的三大方針:
(1)提升生活便利性。
透過區域、州以及地方層級的基礎設施投資暨土地使用規劃,確保工作場所、購物中心、學校、娛樂以及各種生活服務設施皆在國民居住生活環境周邊。從而減少通勤時間、提供良好的步行與自行車發展環境、提升生活品質。
(2)更高效的交通運輸系統。
透過更高效的交通運輸系統暨潔淨能源運輸規劃,可有效降低氣候變化風險及其影響,確保構成整體性的均衡運輸系統,得以達成永續交通系統的目標。
(3)推動零排放車輛。
透過部署電動車充電或氫燃料補充設備計畫,推動低污染、使用清潔能源、油電混合車、氫燃料電池車等零排放車輛。
藉由「交通運輸業去碳藍圖」,將可望完善綠色運輸規劃、減少消費者支出、改善公眾健康,同時保障國家能源安全,進而提升美國人民生活品質、環境永續性,並兼顧國家經濟的可持續發展。
面對全球淨零排放浪潮,此藍圖值得讓同樣已宣示將和國際主流同步,達到2050淨零排放目標的我國,借鏡參考。
加拿大聯邦上訴法院於Miller Thomson LLP v. Hilton Worldwide Holding LLP案指出,儘管企業在加拿大未設立實體店面,但如在加拿大有提供與該實體店相關聯的服務,仍可就其服務使用該企業之商標。 該案背景為希爾頓集團(Hilton Worldwide Holding)在加拿大未有華爾道夫酒店(Waldorf Astoria)的實體店,卻將WALDORF ASTORIA(下稱系爭商標)於加拿大註冊用於「酒店服務」。對造Miller Thomson欲在加拿大註冊「WALDORF」、「THE WALDORF」、「WALDORF HOTEL」等類此名稱的商標,遭希爾頓集團反對。Miller Thomson為此主張商標註冊官應命希爾頓集團依商標法第45條規定,提出有在加拿大使用系爭商標的證明。希爾頓集團指出,系爭商標有使用於全球預訂、付款服務,且加拿大客戶為忠誠會員亦有獎勵積分等。然而,商標註冊官以先前Motel 6 Inc. v. No. 6 Motel Ltd. [1982] 1 FC 638 (FCTD) (“Motel 6”)判決,與加拿大商標異議委員會(Trademarks Opposition Board,TMOB)Stikeman Elliott LLP v. Millennium & Copthorne International Ltd., 2015 TMOB 231 (“M Hotel”) and Maillis v Mirage Resorts Inc, 2012 TMOB 220等案,認為須由實際位於加拿大的酒店,始能提供酒店服務,遂撤銷系爭商標的註冊。 經希爾頓集團提起訴訟後,聯邦上訴法院認為商標法未有「服務」的定義,因此有無使用商標,認定方式應符合現代的商業慣例。聯邦上訴法院指出,無論企業提供的是主要服務、附帶服務或輔助服務,只要消費者從中獲得實質利益,即代表企業已實現其服務。準此,華爾道夫酒店在加拿大雖僅有預訂、付款服務,屬於附帶或輔助服務,但若消費者有因系爭商標的原因,而願意在加拿大利用華爾道夫酒店提供的附帶或輔助服務,並從中獲得利益,則可認定系爭商標有在加拿大被使用。 該判決的重要性在於確立即便在加拿大無實體存在,商標權人仍可將商標與其服務結合,但聯邦上訴法院提醒,僅在加拿大境外在網站上顯示商標,尚不足證明該商標有使用於所註冊的服務。此外,商標若結合於網路服務使用,則商標人與加拿大消費者間須有足夠程度的互動,因此,商標權人為了持續受商標法的保護,有必要詳細記錄業經註冊商標的使用情況,俾利在發生爭議時,有證據資料得以佐證。
CRTC以違反加拿大「反垃圾郵件法」對波特航空開罰加拿大之地區航空公司-波特航空(Porter Airlines),因違反當地「反垃圾郵件法」(Anti-Spam Law),於2015年6月29日被加拿大廣播電視及通訊委員會(Canadian Radio-television and Telecommunications Commission,簡稱CRTC)裁罰150,000美元。 2014年7月1日施行之反垃圾郵件法,係為杜絕因濫發郵件而對資料當事人造成困擾所制定。在該法中,針對寄送商業電子訊息要求需符合「獲得當事人同意」、「識別發送人之資訊」、「取消訂閱功能設計」等三項條件。然而,波特航空所寄出之商業電子訊息,卻:(1)未設計退訂機制供資料當事人選擇退訂;(2)未提供法規要求之發送人完整聯絡訊息;(3)資料當事人提出取消商業電子郵件訂閱之請求,未於法定之10個工作日內執行;(4)自2014年7月至2015年2月寄出之每一封商業電子郵件,波特航空無法證明其已獲當事人之同意而為之。 CRTC法遵暨執行部門主席Manon Bombardier認為,在過去,企業都習慣依照一般商業慣例或內部政策執行相關工作,透過此一個案,希望能對其他企業產生警示作用。企業應針對發送電子商業訊息之部分,重新檢視並審查其內部相關程序及步驟,是否確實符合當地法規要求及條件,以免類似觸法事件再度發生。
日本健康保險擴大遠距醫療適用對象並提高支付標準日本厚生勞動省對於利用電話、視訊等資通訊機器所為之遠距醫療,因應明年修正健康保險診療報酬,提高遠距醫療服務給付項目及支付標準,為了明確適用健康保險之相關要件與規定,成立研究委員會以作成相關適用指引。隨著資通訊技術發展,利用資通訊機器所為之遠距醫療漸漸普及。在擔保醫療之安全性、必要性及有效性下,為了更進一步普及並推進適當之診療,有必要整備相關法令規定。厚生勞動省於11月設置研究委員會,預定在2018年3月底前訂定「遠距醫療適用指引(情報通信機器を用いた診療に関するガイドライン)」。 日本1948年制定之醫師法第20條規定醫師非親自診療,不得為治療等行為。此一規定迄今未修正,遠距醫療並非當時所能想像與規範。目前,厚生勞動省以函釋通知方式,對於該條之適用為相關通知與事務聯絡,以擴大遠距醫療適用之可能性。厚生勞動省於1997年第一次發出之通知(平成9年12月24日健政發第1057號厚生省健康政策局長通知),對於遠距醫療與醫師法第20條的適用關係提出基本見解,認為醫師法第20條親自診療原則規定,不一定等於直接見面診療,以代替方式而對於病患身心狀況得以獲得有用資訊下,使用遠距醫療並非違反本條親自診療規定。在本號通知「留意事項」中,對於遠距醫療之適用對象地區與病患,有以下規定:1. 初診原則上必須為面對面診療;2.直接面對面診療有困難之離島及偏遠地區;3. 對於病況穩定之病患,在確保緊急對應處理及聯絡體制下,以「別表」列舉適用之慢性疾病(例如:居家氧氣治療病患)為對象。但是本來只是例式規定的「非初診」「離島及偏遠地區」、「特定慢性疾病」,卻被解釋成限定列舉規定,導致遠距醫療適用範圍非常狹窄,變成原則禁止之情形。 直至2015厚生勞動省再發出通知(平成27年8月10日厚生勞動省事務連絡),明確非初診、離島及偏遠地區、「別表」所列舉之慢性疾病等,僅是例式規定,對象地區及病患不限於此,以及就算是初診,直接為親自診療有困難時,基於病患要求下充分考量病患有利條件下,依據醫師之判斷,活用各種可能之工具,結合社交網路服務(SNS)、視訊影像以及電子郵件等方式組合而為適當之遠距醫療。於「別表」列舉遠距醫療之九種病患對象為,居家氧氣治療病患、居家罕見疾病病患、居家糖尿病患、居家氣喘病患、居家高血壓病患、居家過敏性皮膚炎病患、褥瘡居家療養病患、居家腦血管病患以及居家癌症病患等。 2015年通知使得遠距醫療之適用對象範圍大為擴大,因此日本醫療院所積極整備資通訊設備環境。同時,厚生勞動省在2017年底提出之2018年度福祉預算中,明確修正健康保險診療報酬,提高遠距醫療之醫療服務給付項目與支付標準,使得利用遠距醫療為診療服務之利益大為提高,更加速提高遠距醫療之利用可能性。惟,前述2015年通知之內容,對於適用對象與診療內容,尚有不明確之處,因此邀集醫療、法學、遠距醫療專門等12名專家成立研究委員會,以訂定明確適用規則,防止未來對於病患造成不利益之判斷。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。