拜登政府首次發布「交通運輸業去碳藍圖」,宣示2050年前達成淨零碳排目標

  美國總統拜登(Joe Biden)於2023年1月10日首次發布「交通運輸業去碳藍圖」(The U.S. National Blueprint for Transportation Decarbonization),致力於2050年前達成交通運輸業淨零碳排目標。

  交通運輸業碳排放占美國碳排放總量三分之一,是二氧化碳的主要排放源,有鑒於此,是美國淨零路徑的優先重點對象。「交通運輸業去碳藍圖」是以《跨黨基礎建設法》(Bipartisan Infrastructure Law)和《降低通膨法案》(The Inflation Reduction Act)作為依據,這兩部法律代表美國願意對建立一個更安全、更永續的交通系統而做了歷史性投資。本藍圖由美國能源部、運輸部、住宅與都市發展部以及環保署共同訂定,列出交通運輸業整體淨零轉型的重要方向與架構,具體體現拜登政府力抗氣候變遷,誓言2035年達到100%潔淨電能、2050年實現淨零碳排放的目標。

  藍圖提出交通運輸業去碳策略的三大方針:

  (1)提升生活便利性。

  透過區域、州以及地方層級的基礎設施投資暨土地使用規劃,確保工作場所、購物中心、學校、娛樂以及各種生活服務設施皆在國民居住生活環境周邊。從而減少通勤時間、提供良好的步行與自行車發展環境、提升生活品質。

  (2)更高效的交通運輸系統。

  透過更高效的交通運輸系統暨潔淨能源運輸規劃,可有效降低氣候變化風險及其影響,確保構成整體性的均衡運輸系統,得以達成永續交通系統的目標。

  (3)推動零排放車輛。

  透過部署電動車充電或氫燃料補充設備計畫,推動低污染、使用清潔能源、油電混合車、氫燃料電池車等零排放車輛。

  藉由「交通運輸業去碳藍圖」,將可望完善綠色運輸規劃、減少消費者支出、改善公眾健康,同時保障國家能源安全,進而提升美國人民生活品質、環境永續性,並兼顧國家經濟的可持續發展。

  面對全球淨零排放浪潮,此藍圖值得讓同樣已宣示將和國際主流同步,達到2050淨零排放目標的我國,借鏡參考。

相關連結
※ 拜登政府首次發布「交通運輸業去碳藍圖」,宣示2050年前達成淨零碳排目標, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8962&no=67&tp=1 (最後瀏覽日:2026/02/10)
引註此篇文章
你可能還會想看
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

韓國2013年智財施行計畫檢討評估作法介紹

韓國2013年智財施行計畫檢討評估作法介紹 科技法律研究所 法律研究員 陳聖薇 2014年12月23日 壹、事件摘要   依據韓國智慧財產基本法第10條,韓國針對國家智慧財產施行計畫之執行成果,應定期進行整體檢討評估,以作為往後計畫之參考指標。為此,韓國於2014年8月11日公布「2013年度國家智財施行計畫之檢討評估結果」[1](以下簡稱2013檢討評估結果)。本文以下將簡要說明之。   如同「2012年度國家智財施行計畫之檢討評估結果」(以下簡稱:2012檢討評估結果),2013檢討評估結果針對2013年度國家智財施行計畫(以下簡稱2013年施行計畫)之5大政策面向:創造、保護、運用、基礎環境、新智慧財產,以及地方自治團體等六個面向挑選出重點推動之35課題,由民間專家組成「政策評估團」,以確保評估之專業性及客觀性。而具體評估方式與指標以下分別說明之。 貳、評估方式與指標 一、評估方式   韓國考量到智財施行計畫之特殊性,再者,評估國家層級智財政策之成效,不僅需要評估政策成果,同時也要對政策形成、執行等政策基礎環境之確保等相關要素進行評估,以作為下一年度計畫政策之參考。   為確保評估之專業性及客觀性,由韓國智財委員會之民間委員、及下設之創造、保護、運用、基礎環境、新智慧財產等專門委員會之專門委員,以及地方自治團體代表等30位成員組成政策評估團。每位評估委員就各機關提出之實績報告書內容為判斷依據,再依照不同指標之特性,進行定量和定性評估。政策評估團第1次評估完畢後,就會召開調整會議,決定各推動課題之評估等級(分成優秀、普通、需要改善3個等級)為何。最後,本智財施行計畫之最終評估結果會告知相關機關,供其制定、執行政策之參考,並且運用於智慧財產財政分配方向及下年度施行計畫之制定上。 二、評估指標   在評估指標設計上,韓國一大特色在於其不以行政機關別為政策評估,而是以創造、保護、運用、基礎環境、新智慧財產等五大政策領域以及加上地方自治團體面向作為評估框架[2]。進一步之細部評估指標則運用國務總理室之政府業務評估(特定評估[3])基本架構,針對「政策形成–執行–成果」整個過程,分階段進行評估。此外,2013檢討評估結果是以2012檢討評估結果為基礎,將既有之指標統合、刪減後,再依據地方政策特殊性,增加地方自治團體之評估指標。指標變更事項有:依據各地方特殊性需要有針對地方量身訂作之「地方自治團體政策差別性」指標;針對識別性較弱之「推動日程之適當性」與「監督與情況變化之對應性」之指標整合。配分變更事項有:因應政策是否實際有感於民的比重日亦加重,「政策效果」之指標也加重配分;就新的指標針對中央與地方分別進行評估。詳細指標內容如下表所示 : 表1:2013年智財施行計畫之中央(地方)機關政策評估指標 區分 評估項目 評估基準 政策形成(30%/35%) 1.計畫確立之適切性(15%) 1-1.事前分析、意見蒐集之充實性(5%) 1-2.成果指標及目標值之適當性(10%) 2.政策基礎環境之確保水準(15%/20%) 2-1.推動體系之充實性(5%/10%) 2-2.資源分配之適當性(10%) 政策執行(30%) 3.推動過程之效率性(20%) 3-1. 與有關機關、政策之連結性(10%) 3-2.監督與情況變化之對應性(10%) 4.政策擴散之努力水準(10%) 4-1.政策溝通、宣傳、教育之充實性(10%) 政策成果(40%/35%) 5.政策成果及效果(40%/35%) 5-1.成果目標達成度(20%/15%) 5-2.政策效果(20%) 資料來源:韓國國家智財委員會,http://www.ipkorea.go.kr/index.do。 參、代結論   在前述評估機制運作下,2013檢討評估結果共列出8個優秀課題與4個待改善之課題。後續針對待改進課題,該主管機關在接受評估委員之改善意見後,會提出補充之改善計畫,表示其要如何解決政策推動之障礙因素,而國家智財委員會則會隨時檢視其執行狀況,並且適時給予政策支援。至於優秀課題部分,韓國將會提供細節資訊與相關機關共享,讓機關之間互相學習,樹立一個學習標準(benchmarking)。   從施行計畫、檢討評估到提供量身訂做之改善建議,顯示韓國對於建構智慧財產強國的企圖。而2012、2013檢討評估結果之經驗,也將持續提供為2014年檢討評估之參考,使智慧財產施行計畫之檢討評估能更具效率。 [1]韓國國家智慧財產委員會,2014年8月11日公布之第11回國家智財委員會決議〈13년 시행계획 점검평가결과〉。 [2]依據政策領域評估的課題計有 :創造(2)、保護(4)、活用(5)、基礎(3)、新智慧財產(4)以及地方自治課題(17)。 [3]韓國政府業務評估基本法第2條第4款,所謂特定評估,指國務總理以中央行政機關為對象,為統合管理國政,對必要之政策進行評估。

.PHARMACY頂級域名(gTLD)防止偽藥流竄

  仿冒藥品在網路通路的銷售流通向來十分猖獗,根據國家藥事管理全會(National Association of Boards of Pharmacy, NABP)統計,全球約有97%的藥品銷售網站販賣仿冒藥品。職業醫療服務機構(Occupational Medical Services, OMS)也指出,2010年全球的偽劣藥品約有750億美元的市場規模,而消費者於網路上買到的藥品約有50%都是仿冒藥品。全球每年約奪走七十萬人命的肺結核和瘧疾,其中約二十萬人的死亡主因並非疾病,而是服用了仿冒藥品。   為了阻止仿冒藥品在網路銷售通路的氾濫,NABP申請並通過審核,成為新創立的.PHARMACY頂級域名(gTLD)的註冊資料庫管理者(Registry Operator),負責.PHARMACY頂級域名的網域名稱資料管理。.PHARMACY頂級域名提供藉由網路銷售處方藥、處方藥相關產品、藥事服務或資訊的公司提出申請。公司提出域名申請時,會由NABP負責審核,以確保使用.PHARMACY頂級域名販售藥品的網站,都符合相關管制標準及當地法規,包含網站所設立的地點及藥品銷售或運送地點等。為執行.PHARMACY頂級域名計畫,NABP下設不同功能的常設或非常設組織,例如在.PHARMACY開放申請的國家,如法國、日本及德國等,設立國家標準制定委員會(National Standard Setting Committees),於該國家的公司提出.PHARMACY頂級域名申請時,為NABP提供該國藥事相關法規的協助,以利NABP審核頂級網域名稱的申請案件。   .PHARMACY頂級網域名稱於2014年11月開放申請。未來,世界各地的消費者在網路購買藥品時,只要認明有後綴.PHARMACY的網址,就不用擔心會購買到偽劣藥品了。

德國車輛及其系統新技術研發計畫

  德國經濟與能源部於2017年11月公布車輛及其系統新技術補助計畫期中報告,補助的研究計畫聚焦於自動駕駛技術及創新車輛技術兩大主軸。   在自動駕駛研究中,著重於創新的感測器和執行系統、高精準度定位、車聯網間資訊快速,安全和可靠的傳輸、設備之間的協作、資料融合和處理的新方法、人機協作、合適的測試程序和驗證方法、電動汽車之自動駕駛功能的具體解決方案。其中以2016年1月啟動的PEGASUS研究項目最受關注,該計畫係為開發高度自動化駕駛的測試方法奠定基礎,特別是在時速達130公里/小時的高速公路上。   在汽車創新技術的研究發展上,著重於公路和鐵路運輸如何降低能源消耗和溫室氣體排放,包括透過交通工具輕量化以提高能源效率、改善空氣動力學之特性、減少整體傳動系統的摩擦阻力、創新的驅動技術。另外,也特別注重蒐集和利用在車輛操作期間產生的資料,例如在於操作和駕駛策略的設計,維護和修理,或車輛於交通中相互影響作用。   本報告簡介相關高度實用性技術研究計畫,同時展望未來研究領域,以面對現今產業數位化的潮流和能源效率及氣候保護的發展的新挑戰,因此,資通訊技術、自動控制技術以及乾淨動力來源技術,將會是未來交通領域研究的重點。

TOP