美國商務部(Department of Commerce, DOC)旗下國家標準及技術研究院(National Institute of Standards and Technology, NIST)於2023年2月28日發布《晶片與科學法》(CHIPS and Science Act)補助具體內容,重點如下:
一、申請時間:補助採滾動式錄取模式(rolling basis),先進製程製造補助將於2023年3月31日起開放預先申請(pre-application)與正式申請(full application);成熟製程與其他相關生產設施的製造補助,將分別於2023年5月1日及6月26日開放預先申請及正式申請。
二、補助方式與金額:補助分為直接補助(direct funding)、聯邦政府貸款(federal loans)或第三人提供貸款並由聯邦政府提供擔保(federal guarantees of third-party loans)。直接補助的金額上限預計為預估資本支出的15%。每個計畫可透過一種以上之方式獲得補助,然整體補助金額不得超出預估資本支出的35%。
三、申請流程
1.意向聲明(statement of interest):申請人須提供半導體製造工廠投資計畫的簡要說明,俾利NIST旗下晶片計畫辦公室(CHIPS Program Office)為未來審查進行準備。
2.預先申請:申請人提供更詳盡的計畫內容。晶片計畫辦公室將給予調整意見。
3.正式申請:依照晶片計畫辦公室給予的意見修改後,申請人應遞交完整的計畫申請書,內容必須包含投資計畫的技術與經濟可行性之分析。晶片辦公室審核完畢後,會與申請人簽訂不具約束力的初步備忘錄(non-binding Preliminary Memorandum of Terms),記載補助方式與金額。
4.盡職調查(due diligence):在經過上述程序後,晶片計畫辦公室如認為申請人合理且可能(reasonably likely)取得補助,將對申請人進行盡職調查。
5.補助發放:通過盡職調查後,DOC將開始準備發放補助。
四、補助規範與限制
1.禁止買回庫藏股(stock buybacks):受補助者不得將補助款用於買回庫藏股。
2.人力資源計畫:申請人要求的補助金額若超過1億5千萬美元,須額外說明將如何提供員工可負擔且高品質的子女托育服務。
3.建造期限:受補助者必須於DOC所決定的特定日期(target dates)前開始或完成廠房建造,否則DOC會視情況決定是否收回補助。
4.分潤:補助金額超過1億5千萬美元時,受補助者須與美國政府分享超過申請計畫中所預估之收益,但最高不超過直接補助金額的75%。
5.不得於特定國家擴產與進行研究:受補助者於10年內或與DOC合意的期間內,除特定情況下(15 U.S.C. § 4652(a)(6)(C)),不得於特定國家,如中國,進行大規模半導體製造的擴產(material expansion)、聯合研究(joint research)或技術授權(technology licensing),違反者將會被DOC收回全額補助。
本文為「經濟部產業技術司科技專案成果」
對於微軟的Windows Media player侵害MP3科技的兩項專利,阿爾卡特朗訊公司7月7日向美國巡迴上訴法院提起訴訟,要求回復對微軟的專利侵權懲罰。 聖地牙哥陪審團在去年2月裁定微軟應就侵害兩項專利權支付15億美元賠償金。微軟爭執這項裁定沒有任何法律或事實上的依據,對此,美國地方法院法官Brewster同意微軟的主張,認為兩項專利侵權的標的中,微軟並未侵害其中一項,而另一項專利,微軟擁有德國Fraunhofer公司的授權,因此法官判定陪審團的裁定並無充足的證據支持,微軟無須支付15億美元的損害賠償。 阿爾卡特朗訊公司宣稱MP3的專利在1989年由AT&T的研發部門貝爾實驗室與Fraunhofer公司共同研發,但朗訊科技在1996年脫離AT&T成為一家獨立的公司,並保留貝爾實驗室的多項專利資產。2006年阿爾卡特與朗訊合併為阿爾卡特朗訊公司,所以該項專利係屬阿爾卡特朗訊公司所有。 微軟發言人表示,Brewster法官的判決是正確的。其中一項專利是微軟向Fraunhofer支付一千六百萬美元授權金而獲得的授權。 阿爾卡特朗訊和微軟對於這場專利爭訟都十分堅持自己的立場,目前尚未有任何跡象顯示未來雙方有和解的可能,看來這場專利戰爭還會持續很久。
美國證券交易委員會成員發佈「數位資產之投資契約」指導文件鑒於「監管不確定性」係加密貨幣市場發展之一大阻礙,2018年間,美國證券交易委員會(United States Securities and Exchange Commission, SEC)成員威廉.希曼(William Hinman)表示,SEC打算發布指導方針,協助市場參與者確認「哪些數位資產之發售,會被認為是投資契約,進而構成證券」,須受到相關證券法規監管。據此,2019年4月3日,SEC公布指導文件:「數位資產之投資契約分析框架」(Framework for “Investment Contract” Analysis of Digital Assets)。惟須注意的是,該文件為內部成員之意見,不具正式法律效力,不得拘束SEC企業財務局或委員會本身,而僅屬一種指導。 美國法上對於「投資契約」的認定標準,為聯邦最高法院建立的Howey Test,即基於合理的獲利預期、且該獲利來自他人的創業或經營努力、而投資金錢於一共同事業者,成立投資契約,進而構成證券。因此,為確認「哪些數位資產之發售,會被認為是投資契約,進而構成證券」,該文件特別針對「Howey Test」中的「基於合理的獲利預期」、「該獲利來自他人的創業或經營努力」,提出具體判斷標準,並輔以「其他相關考量因素」,供市場參與者作一參考: (一)基於合理的獲利預期:例如「數位資產持有人可否分享企業收入或利潤,或從數位資產的增值獲得利潤」、「持有人現在或未來得否在次級市場交易」等具體標準; (二)該獲利來自他人的創業或經營努力:例如「營運上是否去中心化」、「數位資產持有人,是否期待發行人執行或管理必要工作」等具體標準; (三)其他相關考量因素:包含「數位資產之設計和執行,旨在滿足使用者需求,而非投機買賣」、「數位資產的價值,通常會保持不變或隨時間減損,理性持有人不會『以投資為目的』而長期持有」、「數位資產可作為真實貨幣之替代物」等等,文件中指出,只要這些其他相關考量因素越明顯,越不符合上開「基於合理的獲利預期且該獲利來自他人的創業或經營努力」。 文件中亦強調,SEC將參酌個案事實,綜合上開各項標準,為客觀之認定。
美國與歐盟宣布跨大西洋資料保護框架美國和歐盟執委會於2022年3月25日宣布將建立新的跨大西洋資料保護框架(Trans-Atlantic Data Privacy Framework),該框架將促進美國與歐洲之間的資料流通,並解決歐盟法院在2020年宣布隱私盾協議(EU-U.S. Privacy Shield framework)無效時所提出的疑慮與問題。 該框架是重新建立美國與歐盟兩地個人資料傳輸的一個重要法律機制。美國承諾將實施新措施,以確保訊號情報活動(signals intelligence activities)是在必要且合法的國家安全目標下進行,並且不得不成比例地影響對個人隱私和公民自由的保護。基此,美國承諾的新措施包含強化美國訊號情報活動的隱私及公民自由保障機制、建立獨立且具約束力的救濟措施,以及強化美國情報機構對現有訊號情報活動的程序且分層監督。對於歐盟公民而言,將有全新且高標準的規範來保護個人資料;而對於美歐間的民眾和企業而言,該框架將可促進資料持續流動,足以鞏固歐美兩地每年高達一兆美元的跨境貿易,並使各種規模的企業能夠在彼此的市場中競爭。 資料流通對於美歐雙方的經濟關係以及所有企業而言都至關重要。事實上,美國和歐洲之間的資料流通所創造的經濟價值高達7.1兆美元,高居世界首位。在此背景下,新的跨大西洋資料隱私框架將強化美國與歐盟雙方對隱私、資料保護、法治和整體國家安全的共同承諾,未來美國與歐盟雙方將依此框架持續推進雙方各自相關的法律規範。
美國OMB發布人工智慧應用監管指南備忘錄草案美國行政管理預算局(United States Office of Management and Budget, OMB)於2020年1月發布「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」備忘錄草案。該備忘錄草案係基於維護美國人工智慧(AI)領導地位之目的,而依據美國總統川普(Donald John Trump)於2019年2月簽署之「維持美國人工智慧領導地位(Maintaining American Leadership in Artificial Intelligence)─行政命令13859號」,並在啟動美國人工智慧計畫後180天內,經OMB偕同科技政策辦公室(Office of Science and Technology Policy, OSTP)、美國國內政策委員會(United States Domestic Policy Council)與美國國家經濟委員會(National Economic Council)與其他相關機構進行協商,最後再由OMB發布人工智慧應用監管指南備忘錄草案,以徵詢公眾意見。 該備忘錄草案不僅是為了規範新型態AI應用技術,更希望相關的聯邦機構,在制定AI應用產業授權技術、監管與非監管方法上,能採取彈性的制定方向,以避免過度嚴苛的規定,反而阻礙AI應用的創新與科技發展,繼而保護公民自由、隱私權、基本權與自治權等價值。同時,為兼顧AI創新與政策之平衡,應以十大管理原則為規範制定之依據,十大管理原則分別為: 培養AI公眾信任(Public Trust in AI); 公眾參與(Public Participation); 科學研究倫理與資訊品質(Scientific Integrity and Information Quality); AI風險評估與管理(Risk Assessment and Management); 獲益與成本原則(Benefits and Costs); 彈性原則(Flexibility); 公平與反歧視(Fairness and Non-Discrimination); AI應用之揭露與透明化(Disclosure and Transparency); AI系統防護與措施安全性(Safety and Security); 機構間之相互協調(Interagency Coordination)。 此外,為減少AI應用之阻礙,機構制定AI規則時,應採取降低AI技術障礙的方法,例如透過聯邦資料與模型方法來發展AI研發(Federal Data and Models for AI R&D)、公眾溝通(Communication to the Public)、自發性共識標準(Voluntary Consensus Standards)之制定及符合性評鑑(Conformity Assessment)活動,或國際監管合作(International Regulatory Cooperation)等,以創造一個接納並利於AI運作的環境。