美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。

本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。

本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8974&no=16&tp=1 (最後瀏覽日:2025/07/07)
引註此篇文章
你可能還會想看
逐漸式微的「不可避免揭露原則(Inevitable Disclosure Doctrine)」

在2023年,多個美國法院判決拒絕採納「不可避免揭露原則(Inevitable Disclosure Doctrine)」,顯示出該原則將不再是原告於營業秘密訴訟中的一大利器,原告亦無法僅透過證明前員工持有營業秘密資訊且處於競爭狀態,便要求法院禁止該名前員工為其競爭對手工作。 在2023年2月,美國伊利諾伊州北區法院於PetroChoice v. Amherdt一案中指出,法院在適用「不可避免揭露原則」時會遏制競爭對手之間的員工流動,故將評估個案事實並嚴格限制其適用。在2023年6月,美國伊利諾伊州北區法院於Aon PLC v. Alliant Ins. Services一案中指出,根據2016年美國國會所通過的「保護營業秘密法案(Defend Trade Secrets Act, DTSA)」,該法案拒絕了「不可避免揭露原則」的適用,並禁止法院僅憑他人所知悉的資訊,阻礙其尋求新的工作,因此駁回了原告的損害賠償主張。在2023年9月,美國密蘇里州東區法院於MiTek Inc. v. McIntosh一案中同樣拒絕了「不可避免揭露原則」的適用,儘管該州的州法並未明確表達採納或拒絕該原則。 除此之外,美國聯邦法院在去年度的每一份報告意見中(Reported Opinion),皆未顯示出根據「不可避免揭露原則」申請禁令或取得救濟是合理的。換言之,大多數的美國法院都拒絕採納「不可避免揭露原則」或嚴格限制其適用。 綜上所述,儘管「不可避免揭露原則」能有效防止來自前員工不當使用其營業秘密的威脅,但其不再是未來營業秘密訴訟中的勝訴關鍵。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

澳洲隱私保護辦公室檢討實施「選擇退出機制」後對「我的健康紀錄系統」之影響

  澳洲隱私保護辦公室(Office of the Australian Information Commissioner,OAIC)在2019年11月發布的「2018-2019年度健康數位資料報告」(Annual Report of the Australian Information Commissioner’s activities in relation to digital health 2018–19),主要說明澳洲政府實施「選擇退出機制」(opt-out)後,對「我的健康紀錄系統」(My Health Record System)(下稱系統)發生的影響,以及有將近1成的國民大量選擇退出系統,造成系統的醫療健康資料統計困難之檢討。   OAIC認為會發生國民大量選擇退出系統的原因,主要是不信任政府對系統資料保護及不清楚系統使用功能有關,因此提出年度報告,內容如下: 一、改善民眾對醫療資料保護的不信任,例如對醫療業者,開發保護病患隱私的指導教材,防止、外洩即時處理的能力。 二、加強宣傳,例如開發線上資源、影音等,讓民眾在使用系統時能有更清楚認識,且對選擇退出有更明確的認知。 三、改進系統設計,讓民眾能更清楚的看見使用說明,也能隨時掌握在系統上的資訊、設置警報提醒來防止他人侵入、也增加取消功能使資料達到永久刪除的效果。   建置該系統之目的,是因為國家有蒐集與使用國民的醫療健康資料需求,國民也能使用系統查看醫療紀錄、藥物過敏紀錄、曾使用與正在使用的藥物、血液檢查等;醫療人員也能透過醫療資料之電子化,減少重複及不必要的醫療檢查、對症下藥、避免因過敏引起的反應等,將醫療資源做有效的運用。   系統建置是依據「我的健康紀錄法」(My Health Records Act 2012)第三章第一節註冊規定,要將國民的醫療健康資料納入系統,但不願意加入者,得選擇退出系統。而澳洲政府依據此法訂定選擇退出機制,2018年7月正式實施,要求全民強制加入系統,同時開放選擇退出機制,讓不願意加入系統的國民能選擇退出系統;選擇退出機制截止日期原先在2018年10月中旬,但在國民大量反應下,澳洲政府決定延至2019年1月底;在選擇退出機制的實施截止後,OAIC在2019年11月對選擇退出機制做出檢討報告,期望能透過檢討報告提出的建議來增強民眾對系統的信任與促進系統使用率。

歐盟提出先進製造先進歐洲報告與行動方針

何謂「日本A-STEP計畫」?

  日本A-STEP計畫係指研發成果最適展開支援事業計畫,由國立研究開發法人科學技術振興機構負責辦理,主要目的在於兼顧大學研究成果之學術價值及實用性,同時透過產學合作推展大學的研發成果,帶動創新產生。計畫針對產業技術瓶頸,為民間企業不易涉入的高風險研發領域,由科學技術振興機構中介民間企業與公私立大學、公私立技術學院、公立研究機構、國立研究開發法人、公益法人共同執行產學研種子研發計畫,再依據不同的目的、技術性質規劃不同類型的產學研合作研究計畫進行資助。   研究成果最適展開支援事業有兩個特色:單一申請窗口、以及採取接續模式分段申請。其流程為,大學研究人員向國立研究開發法人科學技術振興機構申請研究成果最適展開支援事業,在研究開發階段中,若被補助的種子計畫在結束後,想持續進行研究,可申請另一階段-委託開發實用挑戰之計畫補助,國立研究開發法人科學技術振興機構將透過外界研究人員對計畫進行審核,決定是否延長計畫以及延長的期程。一般研究開發可區分為三階段:可能性驗證、實用性驗證與實證驗證,故研究人員在申請A-STEP計畫時,研究計畫中需提及所申請計畫的現在發展情況與條件及想申請何種項目,以利國立研究開發法人科學技術振興機構決定後續的處理方式。

TOP