美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。

本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。

本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8974&no=64&tp=1 (最後瀏覽日:2026/01/07)
引註此篇文章
你可能還會想看
資訊揭露與市場競爭評估–研析英國水平協議指引中之資訊交換

資訊揭露與市場競爭評估– 研析英國水平協議指引中之資訊交換 資訊工業策進會科技法律研究所 2023年09月23日 英國競爭與市場管理局(Competition and Markets Authority,CMA)於2023年8月16日發布《1988年競爭法第一章禁令適用於水平協議之指引》(Guidance on the application of the Chapter I prohibition in the Competition Act 1998 to horizontal agreements,以下簡稱CMA水平協議指引),以規範實際或潛在競爭者間之協議[1]。CMA水平協議指引提供事業擬定協議內容的參考,事業間於業務合作的同時,亦能符合法遵之要求,以維護市場公平競爭。 壹、事件摘要 英國CMA水平協議指引解釋競爭法之適用,尤其是《1998年競爭法》(Competition Act 1998,CA98)第1章禁止水平協議。2023年1月1日,《1998年競爭法(專業協議集體豁免)2022年指令》(SABEO)與《1998年競爭法(研發協議集體豁免)2022年指令》(R&D BEO)生效,於2023年8月16日發布之CMA水平協議指引,協助事業評估特定類型的水平協議是否受益於SABEO和R&D BEO,和遵守競爭法之相關規範[2]。申言之,CMA水平協議指引協助事業評估其所簽訂之協議內容,是否屬於法規範豁免之類型,且合乎競爭法之規定。 CMA水平協議指引說明研發協議[3]、生產協議[4]、採購協議[5]、商業化協議[6]和標準化協議[7]之適用與範例。鑒於大數據分析與機器學習需使用大量的資料;而大數據分析的結果,或機器學習的應用,將影響決策的形成,資訊交換因而更顯重要[8],CMA水平協議指引亦引導事業為合理的資訊交換。 資訊交換不僅為競爭市場的共同特徵,在一般的情形亦有利於消費者;例如資訊交換有助於解決資訊不對等而提升市場效率,事業能藉由比較最佳實踐方案,以提高內部效率;能減少庫存以節省成本,並處理不穩定的需求;或藉由演算法以開發新的產品或服務;[9]或減少搜尋成本,以提供消費者利益[10]。依據實際情況,資訊交換可以是有利於競爭,競爭中立或限制競爭[11]。換言之,競爭市場中適當的資訊交換,有助於事業降低成本,提升效率。 貳、重點說明 CMA水平協議指引第8章為資訊交換(Information Exchange),目的即在指導事業為資訊交換的競爭評估[12]。資訊交換是否會引發限制競爭之效應,取決於市場的特性,包含[13]: (1)市場透明度:越透明的市場,競爭之不確定性越小[14]。 (2)市場集中度:若市場中僅有少數事業,則易於達成共識,與控制市場偏差。若市場高度集中,則訊息的交換,將有助於事業了解競爭者的市場地位和策略,而扭曲競爭,甚而增加共謀(collusion)的風險;若市場分散,則競爭者間資訊的傳播與交換,對市場而言,可能為競爭中立或有利於競爭[15]。 (3)參進障礙:此使外部競爭者無法破壞市場中的共謀結果(collusive outcome)[16]。 (4)市場穩定度:在供需穩定的市場,亦可能有共謀的結果;而需求的波動、市場中事業內部的大幅成長、新事業的參進、顛覆性創新(disruptive innovation),均可能顯示市場的穩定度不足,需提升交流,以促進競爭[17]。 競爭對手間的資訊交換,依據共享資訊的內容、目的、法律與經濟背景,可能為侵權而應受限制。包含與競爭對手交換事業目前或未來的訂價方向、生產能力、商業策略、針對需求的規劃,對未來銷售的預測,和在特定市場上的財務狀況與經營策略[18],提供價格資料而能預測事業未來的行為,和與競爭對手交換潛在參進者所提出之計畫要點[19]。申言之,事業應避免資訊所生之侵權行為;並需考量市場的特性,以評估資訊交換對競爭之限制。 參、事件評析 CMA水平協議指引第8章,提供事業間交換資訊的相關建議。為提升資訊交換對市場的效益,以資訊內容而言,事業須考量資訊交換的目的,以及藉由收集資訊、確認資訊交換的參與者係使用其具有所有權的原始資料、使用歷史資訊、僅交換與達到目標相符且必要的資訊,而能減少具有商業敏感性質的內容[20]。換言之,事業須避免機敏資料的流通,並具有使用資料的權限。 以資訊應用的角度,事業應採取措施,以控制資訊的交換與使用,包含減少頻繁的交換,以特定團隊(clean team)或信託方式進行資訊交換,或使用資料池(data pool)以確認近用資料之所有權[21]。亦即事業須確認資料的來源,與交換資料的相對人,並能管理資料流通的過程。 綜上所論,足夠的資料量,使大數據分析的結果能充分反映市場的實際需求,事業的決策和布局亦更為準確,適當的資訊交換有助於提升事業的市場競爭力。CMA水平協議指引協助事業評估資訊交換對競爭之影響,事業之資訊管理,除內部資訊之維護外,亦包含外部資訊之交換,如資訊交換之必要性,與資訊近用之權限、方式等,或可提供臺灣事業參考。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]Guidance on Horizontal Agreements, GOV. UK, Competition and Markets Authority, https://www.gov.uk/government/publications/guidance-on-horizontal-agreements (last visited Aug. 23, 2023). [2]CMA COMPETITION & MARKETS AUTHORITY, Guidance on the application of the Chapter I prohibition in the Competition Act 1998 to horizontal agreements, CMA184 (Aug. 2023), 6, at 6, https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1178791/Horizontal_Guidance_FINAL.pdf (last visited Sept. 01, 2023). [3]Id., at 35 below. [4]Id., at 83 below. [5]Id., at 124 below. [6]Id., at 145 below. [7]Id., at 203 below. [8]Id., at 165. [9]Id. [10]Id., at 166. [11]CMA Competition & Markets Authority, supra note 8. [12]Id. [13]Id., at 188. [14]Id. [15]Id., at 188-189. [16]Id., at 189. [17]Id. [18]Id., at 190. [19]Id., at 191. [20]Id., at 201. [21]Id.

美國數州將就大麻合法化與否舉行公民投票

  美國總統選舉於11月8日舉行,數州針對大麻合法化與否一併進行公民投票,針對娛樂用大麻(Recreational Maijuana)議題舉辦公投共有五州,分別為加州、內華達州、亞里桑那州、緬因州以及麻州;而針對醫療用大麻(Medical Marijuana)議題舉行公投則有四州,係佛羅里達州、阿肯色州、北達科他州以及蒙大拿州,其中蒙大拿州原已開放醫療用大麻,本次公投案係放寬現行法規之限制。公投結果顯示,除亞里桑那州公投案未通過外,其餘各州公投案皆已通過。   民調公司蓋洛普(Gallup)於十月公布之民調顯示,美國民眾支持大麻合法化比例,已從1969年的12%爬升至目前的60%。本次各州公投案通過後,將對美國聯邦政府近80年的大麻禁令產生極大壓力。就經濟層面觀察,美國研究機構ArcView Market Research研究報告統計,全美目前合法管道銷售大麻金額從2014年的46億美元成長至54億美元,而作為全美最大經濟體的加州,依投資分析公司Cowen and Company分析,該州本次公投案通過將使全美大麻產業成長三倍,甚至於2026年市場規模將成長至500億美元。大麻合法化後,依「加州大麻業者協會」(California Cannabis Industry Association)估計,將為加州州稅增加十億美元的收入。根據統計,此一趨勢中,推動大麻合法化一方投入約兩千兩百萬美元支持加州公投案,而反對方則投入約兩百萬美元。

中國大陸法院認定體育用品公司攀附日本知名動漫作品名稱係謀取不正當利益

  中國大陸北京知識產權法院於2016年10月26日作成(2015)京知行初字第6058號判決,依中國大陸商標法第41條第1款認定中國尚藍體育用品有限公司之「黑子的籃球」商標(商標號:11226352),係以不正當手段取得,應維持商標評審委員會對其之無效裁定。   法院認為,尚藍公司大量註冊100多個與日本集英社動漫作品《黑子的籃球》相關聯之商標,且無法證明予以實際使用,此行為擾亂商標註冊秩序。《黑子的籃球》在尚藍公司註冊商標前已於中國具有一定知名度,尚藍公司係攀附他人地位而謀取不正當利益。   據中國大陸商標法第41條第1款,已註冊之商標若以欺騙或不正當手段取得註冊,由商標局撤銷之,其他單位或個人得請求商標評審委員會裁定撤銷之。所謂不正當手段,按中國大陸最高人民法院之解釋,指擾亂商標秩序、損害公共利益、不正當占用公共資源及其他謀取不正當利益的手段。本案法院審理時,參酌系爭商標之實際使用情況,並以《黑子的籃球》在中國動漫展、漫畫出版、動畫撥放、網路討論等,認定其在中國具有高度知名度,且先於系爭商標,故對尚藍公司之訴訟主張不予支持。   此判決,可窺見中國大陸法院判斷商標知名度之標準,我國廠商在中國大陸對抗商標蟑螂時,應不可忽略品牌推廣之重要性。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

英國資訊委員辦公室提出人工智慧(AI)稽核框架

  人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。   AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。   「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。   ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。

TOP