美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。

本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。

本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8974&no=64&tp=1 (最後瀏覽日:2025/11/27)
引註此篇文章
你可能還會想看
在西班牙下載音樂無罪?!

  本週西班牙法官判決,認為行為人為私人用途而下載音樂,其行為並非藉以從中獲利,應認其為無罪。 即便,檢察官辦公室及音樂工會呼籲應對此下載音樂並且在郵件及聊天室提供音樂之被告,處以兩年有期徒刑,然而,在此案當中,卻無直接證據證明被告於銷售音樂之過程中獲利。   此判決震驚了音樂工會,如此一來,西班牙一千六百萬的網路使用者將可透過網路交換音樂而不會受到處罰。西班牙唱片工會聯盟 Promusicae 表示,他將對此項判決提起上訴。   由於歐洲不同的法律規定,關於分享檔案的訴訟也會因不同國家而有極大的差異。然而,大多數的歐洲國家傾向對此處以較高的刑罰。就同為歐盟成員的芬蘭而言,上週便有 22 人因為非法分享電影、音樂遊戲及軟體而被處以 427,000 歐元。   至於西班牙此項為個人用途而下載音樂之行為,據其司法院院長指出,則有待立法修正解決。

日本推動智慧醫療照護與巨量資料應用之趨勢觀察

英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

新創及中小企業如何因應美國之《訴訟透明法案》

今年7月,美國國會議員Issa提出了《2024年訴訟透明法案》(H.R. 9922, the Litigation Transparency Act of 2024,下稱《訴訟透明法案》),要求當事人揭露民事訴訟中所取得之金融支援的來源,如商業貸款機構等,以提高訴訟透明度並降低濫訴之情形,惟此提案恐導致美國新創及中小企業更難成功起訴竊取其專屬技術之大企業。 近年來,許多大型科技公司從較小的競爭對手竊取其專屬技術,然而僅有少數案例成功取得賠償金,如:伊利諾州地方法院要求Amazon向軟體公司Kove IO支付5.25億美元的賠償金等。這是由於新創及中小企業縱有證據證明其智慧財產權被盜,在訴訟中多面臨沒有足夠資力與大型科技公司抗衡之窘境,因此往往被迫接受遠低於其所受損失之和解金。透過這種方式,大型科技公司能掌握技術並支付低於取得該技術授權所需之成本,因此被稱之為「有效侵權(efficient infringement)」。 新創及中小企業近期透過與第三方金融資助者協議共享訴訟取得之賠償等方式,降低其進入訴訟程序的經濟門檻,以對抗大型科技公司所採取之「有效侵權」。然而最近一系列案例顯示,中國大陸所支持的第三方金融資助者助長了針對美國企業之智財訴訟,引發了國家安全問題,故立法者為降低營業秘密被外國競爭對手取得之風險、避免無意義之訴訟被廣泛提起,要求當事人揭露其於民事訴訟中所取得之金融支援來源。若《訴訟透明法案》通過,原告所採取之法律策略將可能外洩,而第三方金融資助者亦將受到各方之抨擊,進而導致新創及中小企業在訴訟中更難取得金融支援。 綜上所述,若要降低訴訟之可能性,新創及中小企業須強化其對於專屬技術之保護,從根本減少專屬技術洩露之風險,以避免訴訟發生或進入後端訴訟。有鑑於新創及中小企業與大企業相比,在智財保護觀念上更接近學研單位,且對於營業秘密之管理多未臻完備,因此為確保其能有效落實對營業秘密之管控,建議新創及中小企業可參考智慧局所發布之《學研機構營業秘密管理實作要領》,量身訂作符合自身需求的營業秘密管理制度,並循序完善相應之營業秘密管理措施,以降低專屬技術被竊取的風險。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP