美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。

本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。

本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8974&no=64&tp=1 (最後瀏覽日:2025/12/07)
引註此篇文章
你可能還會想看
日本擬以金融商品交易法對虛擬貨幣之首次代幣發行予以監管

  由日本金融廳(FSA)與各界相關人士組成的「虛擬貨幣交換產業相關研究會」(仮想通貨交換業等に関する研究会)於2018年11月2日再度召開會議,本次會議主要針對是否需就ICO監管予以討論。   按ICO,乃是指虛擬貨幣之首次代幣發行(Initial Coin Offering),即向社會大眾發行數位代幣(token),並收取主流虛擬貨幣之籌資行為。在過去,日本僅以向金融廳諮詢會報的方式督導,對於虛擬貨幣之交易所僅課予註冊義務,並未對於ICO行為予以規範。而ICO因其大量之籌資行為可能產生之風險如詐欺、非法募資或洗錢,從而日本金融廳研擬將ICO列入「金融商品交易法」規範之。   而就ICO是否有受到金融監管之必要,會議中主要之考量有以下兩點: 使用虛擬貨幣之行為是否具有金錢上融資之功能,會議中對於不具權利性質之虛擬貨幣認為無監管必要; 引入金融監督機制是否符合社會期待。   另外,會議中並就ICO和首次公開募股(Initial Public Offerings,以下簡稱IPO)進行比較,有認為,倘若ICO具有如同IPO籌集資金之經濟功能,並且也可能產生如同IPO之相同風險,理應受到相同之規範。可為之規範例如對於賣家進行最低度審查,避免透過籌資為詐欺之可能;限制權利內容模糊不清之虛擬貨幣流通,並對發行人之財務和業務狀況進行篩選;課予ICO負有如同IPO之揭露義務,並須在網站上公布對於投資人有影響性之資訊;使發行價格更有衡量基準。另外JVCEA(日本仮想通貨交換業協会)作為監管機構,擬對於ICO在銷售開始、銷售結束,甚至銷售結束後仍課予持續的情報提供義務。   而於後續2018年11月26日召開之第十次會議中,表示對於ICO在未來不會採取禁止之態度,仍保持鼓勵之立場,但對於投資人之保護需要更全面予以考量,減少利用ICO詐欺之情形。另外,對於虛擬貨幣交換業者,需要加強對客戶財產之管理和維護,亦可能對其施加信託義務,俾利加強投資人信心。   ICO在日本非常盛行,但也因此詐欺案件頻傳,對於日本將以何種方式監管ICO;對於虛擬貨幣交換業者之規範,對投資人之保護是否足夠;又或是此類規範將形成交換業者反抗,依目前會議頻繁討論之程度應很快會有定論。惟對於此種新創之產業,往往需在監管與鼓勵發展間求取平衡,而日本在虛擬貨幣之發展上,又領先亞洲各國,對於此次監管議題後續發展,實值關注,並得以借鏡我國,作為我國在相同議題上之參考。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

從美日共同侵權責任認定之實務發展談創新服務方法發明之專利布局策略

美國專利局授予Chromatin公司獨占植物小染色體權利

  美國專利局日前核准美國Chromatin公司一項指標性專利,該專利係用在動植物細胞上,作為傳遞媒介的小染色體建構物(construction of mini-chromosomes as vectors for plant and animal cells),與使用基因工程小染色體創造轉基因植物的技術(techniques for creating transgenic plants using engineered mini-chromosomes)。這項專利的重要性並非針對特定的植物品種,而是使Chromatin公司在植物使用小染色體的技術上,取得的獨佔權利。   此項專利的技術最初由芝加哥大學的研究人員所開發,該校將技術專屬授權給Chromatin公司,並允許該公司為了商業目的進行轉授權(sublicense)。該公司在這方面的相關權利上,可謂積極進行佈局,並已經擁有超過40項,包括小染色體設計、傳遞與使用等方面的專利權、專利申請與發明。該項專利所描述的技術,可在植物中同時增添幾個基因(gene stacks),不但可節省研發時間,並可衍生具商業價值的新產品。此外,確認用作植物絲點(plant centromeres)的核酸序列,可使該公司在多種植物品種中,產生穩定的DNA構成物(stably inherited DNA)與小染色體。   Chromatin公司主要業務,為開發與銷售促使整個染色體經設計或經混合,而進入植物細胞之新穎技術。這些經過處理的染色體,在維持對基因表現作精確控制的狀況下,可同時將多功能的基因注入植物細胞中。Chromatin公司利用這些新基因工具來設計與銷售產品,這些產品可賦予植物更多的商業價值,包括改進養分與健康特性,在用途上則包括工業、農業與醫藥產品的開發。

TOP