日本專利局公布大學研發成果落地運用案例研究,協助大學衍生新創

日本專利局(特許庁)自2019年啟動「智財戰略規劃師派遣計畫」(知財戦略デザイナー派遣事業),向大專院校派遣智財戰略規劃師,發掘大學內部埋藏之研發成果,協助研發成果落地運用或衍生新創公司,進而帶動產業創新。為支援智財戰略規劃師達成上述工作,日本專利局於2023年4月14日公布「大學研究成果衍生新創案例研究」(大学研究成果の社会実装ケーススタディ,以下簡稱案例集),介紹大學衍生新創重要案例,並針對新創公司設立、簽約等各階段,以對話形式說明應注意事項。

案例集分為第1章「新創篇」、第2章「與企業合作篇」,以及第3章「其他篇」,每篇介紹不同案例,一共收錄9個案例,如「以和企業共有之專利作價,投資設立之新創公司」、「AI新創公司之商業模式」、「新藥開發平臺相關之商業模式」、「活用智財戰略設立之新創公司」、「以與企業共同研究為基礎之專利申請戰略」等。上述案例均依照「發現發掘」(発明発掘)、「制定智財戰略」、「預備衍生新創」(社会実装準備)、「支援後階段」等4個流程展開,以圖文及對話形式,提醒規劃師在各階段應注意之支援重點及注意事項,並以專欄形式說明失敗案例,期能作為大學研究者、產學合作窗口衍生新創之參考。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 日本專利局公布大學研發成果落地運用案例研究,協助大學衍生新創, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8985&no=16&tp=1 (最後瀏覽日:2025/07/07)
引註此篇文章
你可能還會想看
Thomson Reuter宣佈全球前百大創新機構

  Thomson Reuters於11月14日當週,宣佈全球前100家最具創新機構,美國持續領先,而亞洲及歐洲分別屬第二及第三。然而,中國由於智慧財產保護及全球產品商品化實行因素,未能排入百大企業中。其名單結果來自於Thomson Reuters 2011全球百大創新專案,透過專屬方法分析專利資料及相關指標,來確認這些企業和機構於創新活動領先於全球之地位。   Thomson Reuters智慧財產解決方案事業部總裁David Brown表示:「創新使企業和國家成長繁榮,主要是為了追求克服經濟的衰退並達到競爭優勢」。   2011全球百大最具創新企業的市場資料,與2009年比較顯示,2010年百大企業增加了超過400,000工作機會,較前年提高3%,增加的比率高於同一期間的標準普爾(S&P)500企業的幅度。Brown表示:「全球百大創新組織創造的工作機會代表了創新為經濟成長具意義影響的指標」。除此之外,2011百大創新組織的市場價值加權平均收益較前一年度增加12.9%,而標準普爾500企業市場價值加權平均收益僅增加7.2%。   排名企業依地域分佈,其中40%來自為美國,31%為亞洲,29%為歐洲,亞洲主要為日本和南韓,前者占27%,後者占4%。歐洲主要區分為法國(11%),德國(4%),荷蘭(4%),列支敦斯登侯國(1%),瑞典(6%)及瑞士(3%)。法國為歐洲創新領導國。儘管大陸於專利申請數量佔領優先,但缺乏全球影響力及專利獲證比率之重要因素,故未進入前百大名單。   Thomson Reuters排名的方法,主要是以四大衡量基準:專利獲證比率(patent approval success rate),專利組合對於全球的影響(global reach of patent portfolio),對文獻引用的專利影響(patent influence in literature citation)及專利總數量(overall patent volume),選出前百大名單,如:Apple,Microsoft,Intel,LG和Motorola,全文內容可參考http://www.top100innovators.com/。

美國聯邦與州政府對於污染物排放超標免責立法之衝突。

  美國聯邦最高法院在2017年6月拒絕對聯邦法令-廠房之啟動,停工,與故障之許可證取得(Startup, Shutdown, Malfunction, SSM)底下之州際執行計畫(State Implementation Plans,SIPs)免責條款的上訴聽案,即各州對於SSM的污染物超標限制,無權力訂定免責條款。1聯邦法令SSM規定公司廠房等所有者或營運者需對於初始營運、日後關閉、中間故障等作業程序與維護措施做成報告以獲得並定期更新營業許可證,報告中需對於預測與計畫中的污染物排放與災難可能做說明,並以遵守聯邦法規對污染物排放相關規定為前提。2 聯邦政府當時以美國聯邦法規(Code of Federal Regulation)以及空氣清潔法案(The Clean Air Act)裡的國家周遭空氣品質標準(National Ambient Air Quality Standards) 為準則,授予各州訂定SIP的權限,因此才有各州多以促進經濟、展業發展為由而自行訂定免責條款的產生。   在原本的SSM機制下,計畫中的污染物超標可能適用各州的免責條款,而非計畫或預測中的污染物超標則會依是否有正當辯護,而可能被下禁治令。隨後,因美國前總統歐巴馬十分重視環境保護,而與美國環境保護總局(Environmental Protection Agency,EPA)頒佈新政策,下令各州把其SIP裡對於污染物超標的免責條款全部刪去。   這樣的大動作使各州政府與企業主十分不開心,便開啟了一連串與EPA的訴訟。2008年D.C.巡迴法院在Sierra Club v. EPA 3判定SSM期間內的違反污染污物排放限額不得有任何免責例外。2014年D.C.巡迴法院於Natural Resources Defense Council v. EPA 4更判定EPA沒有權限給予在SSM期間內違法業者創造任何答辯。雖然美國聯邦最高法院拒絕對此爭議聽案,但目前EPA仍有與州政府及企業主訴訟案在進行。

英國為救受Covid-19影響之小型企業成立簡易辦理之復興貸款計畫

  新冠病毒業務中斷貸款計畫(CORONAVIRUS BUSINESS INTERRUPTION LOAN SCHEME,CBILS)係因應疫情於3月23日由隸屬於英國政府之英國商業銀行(British Business Bank為推動中小型企業發展之政策性銀行)所提供八成信用擔保的中小型企業紓困貸款計畫,但承辦銀行授信緩慢或不願承貸,導致成效不彰飽受批評。   英國商業銀行正視小型企業具規模小、缺少抵押物、信用不足、營業資訊不透明及缺乏與銀行間的往來紀錄之特徵,易有不易通過授信徵審,難以獲得融資紓困之問題。業於5月4日另行啟動復興貸款計畫(BOUNCE BACK LOAN SCHEME,BBLS),小型企業只需於受理該計畫之承貸銀行網站填寫1份簡易申請表,輸入公司名稱、地址、公司註冊編號、2019年之預估年營業額與銀行代碼跟帳號,即可申請承貸金額為2,000英鎊以上,最高至企業營業額之25%(上限為50,000英鎊)之六年期之小規模貸款,該貸款提供十成擔保,銀行無需進行授信評估,亦不得要求小型企業進行任何其他形式之個人擔保,BBLS開放至今僅一週,申請件數已高於CBILS。   我國中央銀行之小規模營業人簡易申貸方案以十成信用提供小額貸款,與BBLS相似,惟我國小規模營業人簡易申貸方案採取簡易評分表進行審核,評分表內仍就負責人個人信用及不動產擔保設定進行分數評比,與英國無須進行授信評估頗有差異,雖我國受疫情影響程度未如英國嚴重,但小規模營業人仍受有衝擊,兩國之小額貸款同為十成擔保,我國或可參酌英國授信放寬之作業,提供小規模營業人更寬一點、快一點、方便一點的活水挹注,使小規模營業人度過疫情難關及加速復甦。

英國發布「人工智慧:機會與未來決策影響」政策報告,並聚焦人工智慧運用及管理

  英國科學辦公室於2016年11月9日,發布一份政策報告:「人工智慧:機會與未來決策影響(Artificial intelligence: opportunities and implications for the future of decision making)」,介紹人工智慧對於社會及政府的機會和影響,此份政策報告並提出以下各項重要建議: (一)關於人工智慧及應用界定與發展   人工智慧是指由人工製造系統所表現出來的智慧。不僅是將現有的流程自動化,還包含制定目標,並利用電腦程式實現這些目標,常見案例包括線上翻譯、語音辨識、搜尋引擎篩選排序、垃圾郵件過濾、透過用戶回饋改善線上服務、預測交通流量、環境或社會經濟趨勢發展觀察等。 (二)未來對社會及政府利益及衝擊   人工智慧針對提高生產力有巨大的潛力,最明顯的就是幫助企業或個人更有效地運用資源,並簡化大量資料的處理,例如Ocado 及 Amazon這樣的公司正充份利用人工智慧改善倉儲及銷售網路系統,使得客戶可便利快速購得網購商品。   目前,政府也日益增加相關技術的運用,以提高公共服務效率,使資源達到最佳化分配;減少決策者被誤導的可能;使政府決策透明化;確保各部門更了解人民的意見。然政府在利用人工智慧及巨量資料時,應遵守倫理使用指南,並遵守英國資料保護法及歐盟一般資料保護規則等相關法規。   在巨量資料、機器人、自動系統對於勞動市場的衝擊一直都是關注的議題,對於面臨未來工作結構的轉型及相關技術人員的進修及培養,應及早規劃,以適應未來的轉變。 (三)關於相關道德及法律風險管理課題   人工智慧可能潛在相關道德倫理問題。許多專家認為政府應積極管理並降低風險發生可能性,可從以下兩個面向思考: (1)研究機器學習與個人資料運用結合時,對個人自由、隱私和同意等概念的影響。 (2)調適由人工智慧作決策行為時的歸責概念和機制。   有關實際案例之研究,則包括,執法單位在應用預測技術時,應避免以種族、國籍、地址作為標準,並嚴守無罪推定原則,以防止民眾受到歧視或不公平的指控;透過人工智慧可從公開資料推測出某些私人訊息或其親朋好友的消息,此訊息即可能超出原先個人同意披露的內容;原先匿名化及去識別化的訊息,因人工智慧功能加強,導至可能被重新識別,故須定期檢視該保護措施是否足夠。另外,人工智慧的演算偏差可能導致偏見的風險,為了降低這種風險,技術人員應採取對應措施。   針對責任及疏失的判斷,目前尚無太多的實務案例,但為保持對使用人工智慧的信任,仍需有明確的歸責制,可能有必要讓首席執行長或高級主管對人工智慧做出的決策負最終責任。許多專家也建議,部分技術內容須保持透明度,以確定技術使用時是否有盡到相關注意義務。   人工智慧已成為未來發展趨勢之一,對於社會整體層面影響將越來越深,新的技術除了可提升生產力,帶來便利的生活,同樣也會帶來衝擊。為促進相關產業發展及推展新技術的使用,應打造技術發展友善環境,並對於公眾安全進行相關風險評估,如果風險屬於現有監管制度範圍,應評估是否可充分解決風險,或是須要做相對應的調適。另外,在人工智慧融入現實世界同時,相關業者應注意相關產品安全性、隱私權保護和從業人員的倫理教育,以提高大眾對新技術的接受及信賴,並確保對於未來挑戰及轉變已做好萬全準備。

TOP