歐盟執委會通過數位歐洲計畫2023~2024年工作計畫

為促進歐洲的數位轉型,歐盟執委會(European Commission)在2023年3月24日於通過數位歐洲計畫(Digital Europe programme, DEP)下的2023~2024年工作計畫,預計投入12.84億歐元於「主要數位歐洲計畫工作計畫」(Main DEP programme)(下稱「主要工作計畫」)及「網路安全工作計畫」(Cybersecurity Work Programme),以延續之前投入之成果,並加強歐盟對抗網路威脅的集體韌性。

實際上歐盟於2018年即提出第一個數位歐洲計畫,並透過數位單一市場策略(Digital Single Market strategy)嘗試建立符合數位特性的監管框架,藉以提高歐盟的國際競爭力,發展及加強歐洲的數位能力。數位歐洲計畫包括五個重點領域:超級電腦(Supercomputers)、人工智慧(Artificial intelligence, AI)、網路安全及信任(Cybersecurity and trust)、數位技能(Digital skills),以及確保數位技術在經濟及社會中被廣泛使用。

前述所說的主要工作計畫,其投入資金為9.095億歐元,重要工作有三。首先,藉由關注氣候和環境保護技術、數據資料、人工智慧、雲端、網路安全、先進數位技能及部署此些技術之最佳方法,並加強歐盟的關鍵數位能力。第二,關注數位公共服務,強調具跨境互操作性(cross-border interoperability)的公部門解決方案(例如歐洲數位身份)。此外,也將透過歐洲數位媒體觀測站(European Digital Media Observatory, EDMO)打擊假訊息,並以InvestEU計畫下的策略數位技術投資平台,重點支持中小及新創企業關注網路安全。

其次,網路安全工作計畫的投入資金為3.75億歐元,由歐洲網路安全能力中心(European Cybersecurity Competence Centre)負責執行,將支援建立國家和跨境安全操作中心的能力,以打造最先進的威脅檢測及網路事件分析生態系統。網路安全工作計畫還將資助產業(特別是中小及新創企業)遵守網路安全法規要求的項目,特別是網路及資訊系統安全指令(Directive on Security of Network and Information Systems, NIS2)或網路韌性法案(Cyber Resilience Act)所要求的內容。

歐盟已在加強數位公共服務、數位技能及網路安全等方面投入許多資源,其中網路安全、資安威脅和打擊假消息等議題因其不受地區限制而更受到注目,未來仍待持續關注此些議題之發展。

相關連結
你可能會想參加
※ 歐盟執委會通過數位歐洲計畫2023~2024年工作計畫, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8987&no=86&tp=1 (最後瀏覽日:2025/08/21)
引註此篇文章
你可能還會想看
微軟對歐盟要求其分享開放原始碼的指令提起上訴

  微軟對歐盟指令提起第二次上訴,該指令是命令微軟分享其原始碼給開放原始碼軟體公司。   在歐盟第二最高法院判決前,微軟公司發言人 Tom Brookes 說新上訴,是基於 6 月份( 2005 年)與歐盟總部的協議,要透過法庭決定原始碼的爭議問題。 他說「微軟提起申請要求法院撤銷原訴訟決定,特別是關於將通訊協定的原始碼廣泛的授權,因為這都是微軟的智慧財產權」。 「我們採取這步驟,讓法庭能可以檢視現下的爭議,並就全世界智慧產權的保護提供一個長遠的意義」。   歐盟發言人 Jonathan Todd 說微軟公司軟體的互用性( interoperability )協議,無法用智慧財產加以保護,並且應該能在開放原始碼公司中,根據以往的營業執照加以流通使用。   不過,歐盟的執行者-歐洲委員會認為,相信此事件將獲得解決,如果盧森堡的原審法院維持 2004 年 3 月對微軟公司的規範。在 2005 年 8 月微軟公司最近的訴訟中,顯示出第二種情況。 Todd 說歐盟意識到微軟公司並沒有在與開放原始碼公司的分享協議中,分享微軟的觀點。   另外微軟第一次上訴判決的日期益尚未決定,微軟起訴乃針對歐盟命微軟必須支付 4 億 9 千 7 百萬歐元( 6 億 2 千萬多萬美元)的反拖拉斯罰金,這也是歐洲有史以來最大的反拖拉斯罰金。   歐盟聲稱軟體巨人已過度行使其 Windows 軟體統治,而把競爭者封鎖在市場外。它命令微軟公司出售不含媒體播放器的軟體,並強迫它與其他伺服器軟體競爭者分享技術,使那些競爭者的產品可以與 Windows 為作業軟體的電腦進行更好的訊息交流。

何謂「國立研究開發法人」?

  國立研究開發法人為日本法制度下三種獨立行政法人類型的其中之一(其餘兩種為中期目標管理法人、與行政執行法人),任務乃是獨立於國家,發揮一定程度之自主性與自律性,從事在國民生活或社會經濟安定性等公益目的上所必要,但不須由國家為主體來執行的科學技術之實驗、研究與開發,並且這些科技研發業務,係基於具備一定中長期政策目標之計畫而進行,目的在於最大限度地確保得以提升國家科技水準、同時攸關經濟健全發展及其他公益的研發成果,並被期待產出得參與國際競爭的世界頂尖水準之新創科技,作為國家戰略的一環,同時專注於基礎科學與國家核心技術的研發。但在國立研究開發法人中,其所屬職員的身分並非公務員。   現在日本共有將近30個獨立研究開發法人,如日本醫療研究開發機構、森林研究‧整備機構‧新能源‧產業技術總合開發機構(NEDO)、國立環境研究所等。

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

歐洲將限制對孩童販售暴力遊戲軟體

  歐洲各國司法部長於1月16日與歐盟司法與內政委員會委員Franco Frattini進行會商,包括德國、英國、希臘、芬蘭、西班牙以及法國之司法部長皆同意支持建立全歐一致之共同規範以限制對孩童販售暴力遊戲軟體,並將據此檢視各國電腦軟體相關法制。   Franco Frattini委員過去基於「兒童保護應不分國界」之理念,曾建議建構以歐盟為範圍的標識規範,並鼓勵以兒童為銷售對象之遊戲業者建立自律規約,惟歐盟最後決議應交由各國政府自行規範。而Franco Frattini委員此次提案受到本屆歐盟輪值主席國-德國-司法部長Brigitte Zypries的支持,並指示相關規範建構之第一步,即是出版遊戲軟體分級摘要供家長參考,此摘要將很快於歐盟網站上公布。Zypries認為關於暴力遊戲的限制,歐盟應與國際進行合作溝通,由其針對美國與日本;Frattini則期望在歐盟27個會員國建構專門針對此類遊戲的標識規範,至於其他種類之遊戲則仍由各國政府自行管理。   目前國際間針對暴力遊戲限制,多數國家仍採取提供遊戲分級或相關指導守則之方式,於歐洲,僅英國與德國特別訂定法律加以規範,尤其在英國,遊戲軟體內容若具有對人類或動物之寫實暴力場景,或包含人類的性愛行為者,必須送交英國電影分級委員會(British Board of Film Classification,簡稱BBFC)審查。而美國已有部分州議會通過限制對未成年人販售遊戲的法律,但幾乎皆被「違反美國憲法修正條文第1條-言論自由保障」之理由成功推翻。

TOP