近期人工智慧(Artificial Intelligence, AI)的智慧財產權保護受到各界廣泛注意,而OpenAI於2023年3月所提出有關最新GPT- 4語言模型的技術報告更將此議題推向前所未有之高峰。過去OpenAI願意公布細節,係由於其標榜的是開源精神,但近期的報告卻決定不公布細節(如訓練計算集、訓練方法等),因為其認為開源將使GPT- 4語言模型面臨數據洩露的安全隱患,且尚有保持一定競爭優勢之必要。
若AI產業選擇不採取開源,通常會透過以下三種方式來保護AI創新,包括申請專利、以營業秘密保護,或同時結合兩者。相對於專利,以營業秘密保護AI創新可以使企業保有其技術優勢,因不用公開技術內容,較符合AI產業對於保護AI創新的期待。然而,企業以營業秘密保護AI創新有其限制,包含:
1.競爭者可能輕易透過還原工程了解該產品的營業秘密內容,並搶先申請專利,反過來起訴企業侵害其專利,而面臨訴訟風險;
2.面對競爭者提起的專利侵權訴訟,企業將因為沒有專利而無法提起反訴,或透過交互授權(cross-licensing)來避免訴訟;
3.縱使企業得主張「先使用權(prior user right)」,但其僅適用在競爭者於專利申請前已存在的技術,且未來若改進受先使用權保護之技術,將不再受到先使用權之保護,而有侵犯競爭者專利之虞,因此不利於企業提升其競爭力。
綜上所述,儘管AI產業面有從開源轉向保密的傾向,但若要完全仰賴營業秘密來保護AI創新仍有其侷限,專利依舊是當前各企業對AI領域的保護策略中的關鍵。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國接連發生電腦仲介商 ChoicePoint 與 NexisLexis 分別於 2004 年 10 月及 2004 年 4 月電腦遭入侵,數以百萬計的個人資料被竊取之事件,使得個人資料外洩的問題,受到美國國會的強烈關注。此一事件的發生,同時讓大家注意到加州資料庫外洩通知法( SB1386 )對於消費者保護的重要性。 SB13866 法要求持有個人敏感資料的組織、企業,當資料外洩時,需立即通知當事人。 Choice point 此次即是迫於加州州法的規定,於 2005 年 2 月通知了 3 萬 5 千名加州州民關於其個人資料遭受竊取的的消息。 鑑於個人資料保護的重要性,美國國會議員 Charles Schumer ( 紐約州 ) and Bill Nelson ( 佛羅里達州 ) 仿照 SB1386 加州立法,於 2005 年 4 月 12 日舉辦了「 2005 年個人資料保護風險通知義務法案」( Notification of Risk to Personal Data Act of 2005 )的公聽會。草案建議成立聯邦性法律,要求企業或政府,一旦其持有之個人資料遭到竊取,即需通知當事人。本草案同時明訂企業或政府應通知的事項;並擬允許,讓資料遭竊的個人,可於其信用報告中顯示其 7 年內可能遭受詐欺警告的紀錄。 本法案中除了包含 SB1386 的規定外,也對販賣個人敏感資料進行規範,並要求聯邦貿易委員會( Federal Trade Commission )設立相關組織,以協助資料遭竊之被害者。
美國聯邦加強導入節能績效保證專案,並規劃採購實務增訂規範美國總統歐巴馬於2011年12月發布備忘錄(Presidential Memorandum),要求美國聯邦政府應加強「導入節能績效保證專案(Implementation of Energy Savings Projects and Performance-Based Contracting for Energy Savings)」,並宣布未來24個月內最少將投入20億(billion)美元經費,推動聯邦機構採購實施節能績效保證專案,以改善建築物能源效率。基於政策指示,美國能源部(Department of Energy)下屬聯邦能源管理推動機構(Federal Energy Management Program,以下簡稱FEMP),研議規劃配套機制,協助導入「節能績效保證專案(Energy Savings Performance Contract,以下簡稱ESPC)」,更精簡、效率、低成本之實施模式,並助益美國能源技術服務產業(Energy Service Companies,以下簡稱ESCO)發展。 美國FEMP於2012年2月公告ESPC採購關於「資金(Financing)」部分之「資訊徵求意見書(Request for Information,RFI)」,廣詢實務各界意見,希望能繼而落實於政府採購規範及契約範本之研議,並協助ESCO業者能更順利取得資金,並協助ESCO業者能更順利取得資金,及降低資金取得成本,如此亦可有利益於所採購導入之聯邦機構。 FEMP主要係規劃探討關於ESPC融資資金,最合理且有吸引力之利率,所應考慮各項要件及利率定價模式,並且規劃建立資金協助者之優先名單(Preferred Financiers),以利配套選用。再者FEMP為推動整合,特別探討ESPC跨專案(Project Aggregation (Combining))時,可能影響資金協助者之融資與財務評估,例如數ESPC專案、數ESCO業者、由同一資金協助者承接,或是數ESPC專案、數實施地點、同一ESCO業者,同一資金協助者,亦或者數ESPC專案、數實施地點、數ESCO業者、但同一政府機構、且同一資金協助者,研析相關影響要件。 以及,FEMP並探討ESPC實施「量測驗證(Measurement and Verification),對於取得融資評估過程是否增加複雜影響因素,以及資金協助者對於量測驗證機制,是否認為將增加風險並致更高融資利率,均為重要探討議題。此項意見徵求書,未來將落實於聯邦機構政府採購之實務規範上,相關內容再持續觀察追蹤。
何謂「證券型代幣發行(STO)」?運用區塊鏈技術發行加密貨幣(Cryptocurrency,又稱虛擬貨幣)進行募資,為當前熱門的新創募資手段之一,此種募資方式稱為首次代幣發行(Initial Coin Offering,ICO)。由於ICO過去並未受到監管,其發行也僅有發行人所撰寫的白皮書(Whitepaper)可供參考,投資人與發行人間有相當大的資訊落差,也因此導致以ICO為名的詐騙案件層出不窮。 對此各國監管機關紛紛對ICO進行分類與監管,美國證券交易委員會(SEC)即將加密貨幣區分為效用型代幣(Utility Token)與證券型代幣(Security Token),並將後者納入監管。SEC採用1946年美國聯邦最高法院在SEC v. W.J. Howey Co.案判決中所適用的標準(Howey Test),若「投資人基於對合理報酬的預期,對特定事業進行金錢的投資,且該獲利來自於他方的努力」,即屬於證券型代幣而需要受到監管。 SEC據此對涉及詐欺的ICO案件嚴格執法,並積極輔導非屬詐欺案件依法辦理註冊發行程序。證券型代幣發行(Security Token Offering,STO)即為配合SEC監管規範下,為消除過去對於ICO募資疑慮所產生的法遵解套辦法。對此我國金管會亦積極評估是否將STO的標準引進我國,惟因我國對有價證券之定義與要件,與SEC所採之Howey Test有所不同,而尚在研議當中。
日本經產省與國交省提出「自動駕駛推動發展與制度規劃」檢討報告日本經濟產業省於2016年11月14日召開第二次「自動駕駛商業檢討會」,邀請產官學研各界對於自動駕駛未來國際標準的動向以及諸如協調領域、社會接受度、制度和基礎建設等方面所涉議題,交換意見。 該檢討會首先注意到美國、歐洲以及韓國對於自動駕駛各式規則或指引制定的討論。在協調領域方面,檢討會指出:關於自動駕駛所需的地圖資訊,應由各汽車製造商協調,透過合作機制或規範來確保資訊與資金提供的公平性。 社會接受度方面,檢討會則提出建議考量是否需要針對不擅駕駛的高齡者或初學者,提供有效系統的必要性。在制度與基礎建設方面,檢討會則指出:以現狀而言,自動駕駛服務的商業永續性仍不明朗,必須持續進行實證試驗。 此外,為減少交通事故與因應少子化,與汽車的ICT革命等議題,由國土交通省於同年11月25日設立「自動駕駛戰略本部」(自動運転戦略本部),並於12月9日召開第一次會議。 該次會議討論的範圍包括:為實現無人駕駛的環境整備、自動駕駛技術的研發、普及與促進,以及為實現自動駕駛的實證與社會試驗。 會議結論則由國土交通大臣指示針對「車輛的技術基準」、「年長者事故對策」、「事故發生時的賠償規則」、「大卡車列隊行走」、「非平地道路間以車站為據點的自動駕駛服務」等議題速成立工作小組。