醫療科技公司轉型提供資料類型產品解決方案於美國之智財權布局建議
資訊工業策進會科技法律研究所
2023年05月31日
過去,醫療科技公司僅專注於開發針對醫療問題的硬體解決方案,近年這些企業則致力於轉型開發收集及利用大量病人、資料提供者資料之產品,而轉變成資料平台公司,而更可以全面了解病人及客戶生活習慣及健康狀況。 其中許多解決方案均利用人工智慧(Artificial Intelligence, AI)及機器學習(Machine Learning, ML),相較傳統上研發成果多為硬體設備,現今則轉變成出現大量軟體解決方案,保護研發成果之方式將發生改變,如何選擇合適的智慧財產權保護研發成果成為企業重要課題,此亦影響企業如何做智慧財產布局及擬定公司相關經營策略,因此建議企業——尤其是開發醫療資訊平台之醫療科技公司,特別是致力於開發醫療器材軟體(Software as a Medical Device, SaMD)、醫療設備嵌入式軟體(Software In a Medical Device, SiMD)及應用於醫療技術中的人工智慧等新興領域時可以參考以下提供之思考方向選擇對於企業發展最適切之智慧財產權保護態樣。[1]
研發成果如欲獲得專利保護,該發明必須係獨一無二且可以傳授的——即人們不能將自然發生或不可再現的事物申請專利,因為發明需透過專利以清楚的方式概述,並明確定義專利內容,並向公眾揭露,以便於申請人取得專利、並於專利期限屆滿後(專利保護期限因各國法規、專利類型而將有所不同,建議企業應了解欲布局之國家相關法規規定,如台灣之發明專利[20年]、新型專利[10年]、設計專利[15年]),使大眾得藉以實施該技術內容。[2]
在美國,專利係由美國專利商標局賦予所有權人於一定期間內壟斷其發明之權利,即美國聯邦法律更使專利所有權人在專利權效期內得以禁止他人於該期間內於美國製造、使用、銷售或進口至美國這項已獲得專利保護之發明,此給予專利權人一個得以建立一個阻止他人進入市場的巨大障礙,可防止競爭及保護專利權人可以自由實施該權利。[3]
因專利有上述特性,文章作者建議,如裝置(device)、該裝置使用之軟體,對於從事新藥開發之藥廠,於保護新穎成分(New Chemical Entities)、相關之治療方法及人工智慧相關發明較適合以專利保護。[4]
營業秘密係指資訊擁有者已盡合理努力保密,且不為公眾所周知或非可被公眾輕易探知而具有獨立經濟價值的,任何形式及類型之資訊。合理努力可能包括(但不限於),要求員工簽署保密協議、定期提醒員工其負有保密義務(如:針對職務不同/所從事不同工作之員工,保密義務內容、程度、時間是否有所不同?)、踐行必要而知悉(need to know) 原則(如:執行不同工作之人員是否可互相存取各自的資料? 抑或僅能存取自己工作所需之資料?)、佈署IT安全措施或辦公室安全措施之狀況(如:是否有門禁?資料如有異常存取狀況時是否有示警機制?)並須即時調查及採取行動打擊涉及盜用營業秘密之行為(如:是否有相關通報不當使用營業秘密之管道及監控機制?)[5]
在美國,傳統上營業秘密之保護是結合各州法律而成,除了紐約州及北卡羅萊納州以外,所有州都頒布了其特有版本的《統一營業秘密法》(Uniform Trade Secrets Act, UTSA)——係一項1979年頒布的統一法案。於2016年,國會又頒布了《保護營業秘密法Defend Trade Secrets Act, DTSA》,該法案保障當事人於聯邦法院提起營業秘密訴訟之權利,且只要促進犯罪行為之行為發生於美國,當事人即可於國外進行訴訟,此外,《統一營業秘密法》中規定營業秘密包含公式、模式、彙編、程式、設備、方法、技術或過程。而依《保護營業秘密法》(Defend Trade Secrets Act, DTSA),營業秘密可為任何形式,無論係以物理、電子、圖形、攝影或書面形式儲存、編輯或紀錄之財務、商業、科學、科技、經濟或工程資訊均為營業秘密之範疇,因此,營業秘密之適用範圍較廣,於美國甚至抽象之想法均可受營業秘密保護。[6]
與僅提供有限保護期限之專利有別,如欲獲得營業秘密之保護,僅需資訊持續保密並存在並持續存有價值,該資訊即會持續受到營業秘密保護並擁有無限的有效期限,亦即,只要該資訊仍為秘密,即受到營業秘密之保護。如:可口可樂已將其配方作為營業秘密保護了130多年之久。惟與專利不同的是營業秘密一但被公眾周知或得以透過適當方式獨立開發(如競爭對手自己獨立開發而產出之資訊),就將失去營業秘密之保護。[7]
因為營業秘密之特性,諸如蛋白質結構、客戶清單、機器學習演算法、原始碼、化學製程參數(如:會產生化學反應之溫度或壓力)、甚至是醫療科技公司近年致力經營的人工智慧領域所產出的人工智慧、新的模型訓練方法、優化模型參數、消極專有技術(如:不該做什麼)。[8]
惟選擇專利抑或營業秘密之方式保護其研發成果將視企業的業務為何決定,如缺乏透明度之產業可能較適合以營業秘密方式保護,而非專利。例如:網路安全公司可能傾向於營業秘密保護,因為申請專利揭露其機密安全演算法可使競爭對手開發競爭產品或使駭客進行量身訂製之攻擊。相較之下,製造容易檢測、針對消費者之電子產品之企業更依賴專利保護,製造具有行業標準化品質之產品之企業亦是如此。[9]
總體而言,是否容易被逆向工程將會是決定以專利或營業秘密保護之關鍵性調查方式。因申請專利必須揭露細節事項,將對廣泛保護資料為基礎之軟體(且有使用人工智慧或機器學習)較具挑戰性,故專利較適合保護裝置(device)及會相互作用之實體產品和軟體。而營業秘密則要求資料所有人無限期地維持秘密性,亦須注意自己的想法獲得他人關注時遭仿效之風險,故較適合造價高或難以仿效的軟體、製造方法或產品。[10]
而對於生技醫療公司而言,其應考量使用混和策略以保護人工智慧相關之創新,如:專有之原始和訓練資料、模型之優化參數、將專有技術用於訓練模型及其他難以進行逆向工程之人工智慧相關的此類機密資訊,可能較適合用營業秘密保護,同時該技術的其他方面,如人工智慧系統或使用其開發之藥物則可透過專利保護。[11]惟不論企業決定要將該資訊做為營業秘密保護或申請專利保護,企業對於研究人員發表相關資訊的行為均應審慎評估,避免因揭露而喪失專利之新穎性或營業秘密之秘密性的情形。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
[1]Kristin Havaranek, Martin Gomez, Matt Wetzel, Steven TJoe & Stephanie Philbin, Top 5 IP Considerations for Medtech Companies Transitioning To Data-enabled Product Solutions (2023), https://medcitynews.com/2023/01/top-5-ip-considerations-for-medtech-companies-transitioning-to-data-enabled-product-solutions/ (last visited June 1,2023).
[2]John Quinn, Protecting Inventions Through Patents and Trade Secret (2023), https://www.newsweek.com/protecting-inventions-through-patents-trade-secrets-1788352 (last visited May 30, 2023).
[3]Id.
[4]Charles Collins-Chase, Kassanbra M. Officer & Xinrui Zhang, United States: Strategic Intellectual Property Considerations For Protecting AI Innovations In Life Sciences (2023), https://www.mondaq.com/unitedstates/trade-secrets/1276042/strategic-intellectual-property-considerations-for-protecting-ai-innovations-in-life-sciences (last visited May 30, 2023)
[5]Id.
[6]John Quinn, supra note 2.
[7]Id.
[8]Collins-Chase et al., supra note 4.
[9]John Quinn, supra note 2.
[10]Havranek et al., supra note 1.
[11]Collins-Chase et al., supra note 4.
美國紐約最大的珠寶公司Tiffany 於二○○四年向美國聯邦南紐約地方法院對全世界最大的拍賣網站eBay所提的商標侵權訴訟乙案,在該年度造成電子商務業界的一陣風暴。Tiffany 在起訴狀當中主張, eBay網站中所賣方所拍賣Tiffany的珠寶百分之七十三為仿冒品。雖然,Tiffany發函請求eBay移除刊登在eBay網站上,約一萬九千筆拍賣Tiffany仿冒品的網頁;但Tiffany仍提起訴訟主張eBay未對仿冒詐欺之情形盡監督之責,而造成該公司之營業損失,故須負起共同侵權責任。其它世界知名的精品公司,如 Louis Vuitton Moet Hennessy及Dior Couture也於二○○六年對eBay未盡監督之責而侵害其商標乙事在巴黎地方法院提起訴訟,並要求eBay賠償該兩大精品業者二○○一年至二○○五年之營業損失。 Tiffany的代表律師針對eBay所提起的答辯在六月一日提出補充意見狀表示,原起訴狀所主張的商標權範圍並未限定或引用特定的商標,因此eBay的主張無理由。 Tiffany v. eBay乙案,原定於今年 (二○○七年) 五月十四日在南紐約地方法院進行法官審判程序 (Bench Trail) ,但因五月八日承審法官下令進行訴訟和解程序而延期。今年四月中旬,Tiffany追加訴訟主張eBay侵害其所有的十一個包括Tiffany經典藍色的顏色、PALOMA PICASSO等商標。eBay對上開Tiffany的追加訴訟提出反對意見,主張Tiffany所追加主張eBay侵權的十一個商標未按正當程序提出,將會使得eBay因提出證據的時間不足而造成裁判偏頗之虞,故請求承審法官駁回Tiffany的追加訴訟。 按Tiffany追加eBay所侵害商標數目之目的,係為增加eBay的法定損害賠償義務;因為美國法律規定,商標侵權的法定損害賠償義務計算方式以所受侵害仿冒的商標商品或服務之種類為準,每一項美金一百萬元之賠償金。
美國發布了「消費者隱私權法」草案美國白宮在2015年2月27日發布了「消費者隱私權法」(Consumer Privacy Bill of Rights Act)草案,目的在於擴大消費者資料的保護範圍。 該草案的重點分列如下: 透明性:受規範主體必須提供資訊主體簡潔、明顯、易懂的公告,公告內容必須提供簡潔、明瞭及即時的隱私與安全運作,包含資訊保存、揭露以及個人資料存取機制。 個人控制:受規範主體應該在合理範圍內提供機制,讓資料主體能控制其個人資料之處理,同時也規範應讓消費者撤銷個人資料使用的同意。 注重資料蒐集與合理使用:受規範的公司機構必須依據其清楚、合理的說明規則來進行個人資料的蒐集、保存與利用。同時,在資料蒐集之特定目的完成後的合理時間內,必須針對所蒐集的個人資料進行刪除或是去識別化。 安全性的維護:為了維護個人資料之安全性,以防止其遺失、陷入危險、改變以及未經授權之使用或是揭露,公司機構必須進行安全風險評估,並且採取合理的資訊安全防護措施。 存取與正確性:受規範的公司機構必須提供資訊主體合理的存取權利,同時也應該採取合理的步驟,來維護資料的正確性。 擔負隱私維護的責任:受規範的公司機構必須針對員工實施資安教育訓練、進行隱私評估、隱私設計、遵守隱私保護義務以及採取適當的措施來遵循本草案之規定。 不受本草案規範之公司機構: 25名員工以下的小型公司,且其處理者僅限於員工與求職者之個人資料。 未刻意蒐集、處理、使用、保存或揭露個人病史、原生國籍、性傾向、性別、宗教信仰、資產狀況、精確的位置資訊、獨一無二的生物識別資料或是社會安全號碼,並符合以下要件之一者: 在12個月內蒐集個人資料筆數在10,000筆下; 5名員工以下。 除了要求產業發展處理消費者資料的標準或規則,該草案也要求「聯邦貿易委員會」(Federal Trade Commission, FTC)確認產業所制定的標準或規則必須符合「消費者隱私權法」的規定,包括提供消費者有關其資料如何被收集、使用與分享的明確通知。如果進行消費者資料收集的公司機構違反了「消費者隱私權法」,將會面臨FTC或是州檢察長所發起的法律行動。 該草案引起了產業界極大的反彈,隱私團體也批評該草案太過寬鬆,留給產業界太多自由空間,同時目前國會由共和黨所主導,因此後續立法工作的進行將會面臨極大的挑戰。
歐盟執委會公布《可信賴的AI政策及投資建議》歐盟執委會於2018年6月成立人工智慧高級專家組(The High-Level Expert Group on Artificial Intelligence, AI HLEG),主要負責兩項工作:(1)人工智慧倫理準則;(2)人工智慧政策與投資建議。並於2019年4月8日提出《可信賴的人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI),2019年6月公布之《可信賴的AI政策及投資建議》(Policy and Investment Recommendations for Trustworthy Artificial Intelligence)則是人工智慧高級專家組所交付之第二項具體成果。 該報告主要分為兩大部分,首先第一部分是要透過可信賴的人工智慧建立對歐洲之正面影響,內容提及人工智慧應保護人類和社會,並促進歐洲公司各部門利用人工智慧及技術移轉,而公部門則扮演人工智慧增長及創新之催化劑,以確保歐洲具有世界一流之研究能力;第二部分則是影響歐洲各成員國建立可信賴之人工智慧,內容則提及將發展人工智慧相關基礎設施、教育措施、政策規範及資金投資,同時合法、有道德的使用各項數據。 在本報告中關於法規面的建議則是進一步制定政策和監管框架,確保人工智慧在尊重人權、民主及創新下發展,因此將建立人工智慧政策制定者、開發者及用戶間的對話機制,若是遇到將對社會或是人類產生重大影響之敏感性人工智慧系統,除透過歐洲人工智慧聯盟(The European AI Alliance)進行對話之外,也需要在尊重各成員國之語言及文化多樣性下展開協調機制。另外,報告中也特別提到如果政府以「保護社會」為由建立一個普遍的人工智慧監督系統是非常危險的作法,政府應該承諾不對個人進行大規模監視,並在遵守法律及基本權利下進行人工智慧系統之發展。
美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。