歐洲汽車供應商協會發表關於標準必要專利之政策指南,以期有關單位能給予汽車產業更明確的指示

歐洲汽車供應商協會(European Association of Automotive Suppliers,俗以CLEPA簡稱之)於2023年3月7日發表〈關於標準必要專利之政策指南—一個可因應汽車產業數位轉型現象的歐盟專利規則〉(Standard Essential Patents Policy guidelines—For an EU patent regulation that adapts to the digital transformation in the mobility ecosystem),以期有關單位能給予汽車產業更明確的指示,舉凡:SEP專利權人可向何人為授權、「合於FRAND原則之授權條款」應如何被認定等。

CLEPA提及,由於在一技術領域中有SEP時,其他的技術無「迴避設計」(design-around)可能性,而必得實施該被選為標準之技術,故在該技術領域中,無其他技術可與「受該SEP保護」的技術相抗衡;是以該SEP的價值必須被審慎且精確評估。此外,CLEPA指出,由於汽車產業會投資、研發、銷售有助於未來「移動性」(mobility)發展的下世代產品,故此產業與智慧財產權議題有高關聯性(例如:此產業每年會申請超過39,000筆專利權),應予其在SEP議題上有足夠的明確性(certainty)及可預測性(predictability),使其在「投資於廣泛實施標準的『新技術』」上,更可依循。而創建一個「利益平衡」(balanced)的環境,將有助於授權雙方進行合於「誠信原則」(good-faith)的授權協議。

CLEPA為以上目的,提出五點建議:

(1)應有一「歐盟層級」的立法
一個「歐盟層級」(EU-level)的法架構體系是較足以為SEP專利權人及專利實施者間,提供較「利益平衡」的環境,且較可抑制不公平的SEP授權行為。

(2)「供應鏈中任一層級,均可得授權原則」
凡任何欲得授權者,不論其位於供應鏈中何層級,均應予其有「在符合FRAND原則」下,被授權的機會。又,由於一技術之所以會成為「標準」,係因被「商討」(coordination)而出,倒不一定是因其在市場競爭上,真的有大勝於其他技術的優勢,故授權權利金應僅可反映該技術本身的價值,而不可將「因標準化而可帶來的其他廣大利益」摻入。

(3)對於SEP授權條款應有明確指示
政策制定者及各「標準制定組織」(Standard Setting Organization, SSO)應對「何謂合於FRAND原則之授權條款」提供指南;此外,也應提出就一SEP及其有被納入的「專利組合」(portfolios)的評價方法。

(4)供應鏈中的授權狀況應明瞭
專利實施者應清楚明瞭其是否應獲授權,或其上游元組件供應商是否已獲授權。

(5)應有完整的法體制
政策制定者應制定法體制或應提供關於法體制的指南,以避免SEP專利權人不當申請「禁制令」(injunction),以強使授權協議之可被達成。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 歐洲汽車供應商協會發表關於標準必要專利之政策指南,以期有關單位能給予汽車產業更明確的指示, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9001&no=64&tp=1 (最後瀏覽日:2026/02/04)
引註此篇文章
你可能還會想看
歐盟執委會發佈產品能源標章政策研究報告

  歐盟實施能源標示(Energy Label)制度已屆滿20週年,目前能源標示制度下,主要針對家電產品(house appliances)之能源標示進行管制,共分為七個層級,即A、B、C、D四等級外,另於能源效率表現較好之A等級之上,再行劃分A+、A++、A+++三等級。   歐盟執委會於2012年10月下旬公告能源標示市場調查研究,期在目前能源標示制度(Directive 2010/30/EU)下,探究未來二種可導入的模式: 模式一,導入碳足跡(carbon footprint)、水足跡(water footprint)、資源消耗(resource depletion)、水毒性(water eco-toxicity)等四種環境衡量指標;模式二,僅導入碳足跡(carbon footprint)衡量指標。本研究旨在建立是否上述二種模式能鼓勵消費者採購更佳環境友善的產品,其次,測試消費者對於不同節能績效產品之採購意願。   本研究報告分為三大面向,第一大面向,檢視當前能源相關標示制度與資料,分析產品的碳足跡和環保標示。第二大面向,擇定三個市場,進行消費者質化研究。第三大面向,擇定九個市場並六千名消費者,就消費者之行為調查。   觀歐洲議會已於2012年底就若干產品之能源標示進行審議,與歐盟經貿關係亦屬密切之台灣當持續關注此項議題。

歐盟發布頻譜政策公眾諮詢書

  於今年 5 月中旬,歐盟無線頻譜政策小組 ( Radio Spectrum Policy Group ,以下簡稱 RSPG ) 對於是否允許使用用以提供廣播電視服務之頻段,提供多媒體服務 (multimedia services) 一事,表示意見並徵詢共眾意見,而所稱的多媒體服務係指於行動通信環境中,提供結合傳統廣播 ( 一對多 ) 以及通訊 ( 點對點 ) 的服務。於此次的公眾意見諮詢書中, RSPG 表示此次意見諮詢的目的旨在促進多媒體服務的提供,但亦指出多媒體服務的發展不應扭曲頻譜的整體使用規劃以及市場競爭。除此之外,亦不應與歐盟各會員國境內以促進文化及媒體多元化之媒介內容規範相左。而就如何導入多媒體服務一事, RSPG 考量核發新執照,或是重新檢視現有的執照制度,以允許業者得使用頻譜提供多媒體服務。此次的公眾意見諮詢將於 6 月 14 日 結束,其發展有待未來更進一步的觀察。

歐盟第29條工作小組發布「自動化個人決策和分析指引」處理個人資料自動化決策與資料剖析風險問題

  歐盟第29條工作小組於2017年10月3日為因應歐盟一般資料保護規則(GDPR)第22條規定發布「自動化個人決策和分析指引」(Guidelines on Automated individual decision-making and Profiling for the purposes of Regulation 2016/679,2018年2月6日進一步修正,下稱指引),處理對個人資料自動化決策(automated decision-making)和個人檔案剖析(Profiling)的建立。   指引分為五個部分與最佳實踐建議,旨在幫助資料控制者(controller)合乎GDPR對個人資料自動化決策和分析的要求,內容包括下幾點:1.定義自動化決策和分析,以及GDPR對這些概念的處理方法;2.對GDPR第22條中關於自動化決策的具體規定;3.對自動決策和分析的一般規定;4.兒童和個人檔案剖析(Profiling)的建立;5.資料保護影響評估。   指引的主要內容包括:   個人檔案剖析(Profiling),意謂收集關於個人(或一群個人)的資料,並分析他們的特徵或行為模式,加以分類或分群,放入特定的類別或組中,和/或進行預測或評估(例如,他們執行任務的能力,興趣或可能的行為)。   禁止對個人資料完全自動化決策,包括有法律上法或相類重大影響的檔案剖析,但規則也有例外。應有措施保障資料主體的權利,自由和合法利益。   GDPR第22條第二項a之例外規定,(履行契約所必需的),自動化個人決策時,應該作狹義解釋。資料控制者必須能夠提出分析、自動化個人決策的必要性,同時考慮是否可以採取侵害隱私較少之方法。   工作小組澄清,關於在要求提供有關自動化決策所涉及的邏輯上有意義的資料時,控制者應以簡單的方法,告訴資料主體其背後的理由或依據的標準,而不得總是以自動化決策所使用算法進行複雜的解釋或者公開完整的算法為之。所提供的資料應該對資料當事人有意義。   對資料主體提供關於處理自動化決策上有關重要性和預期後果的資料,其意義在於必須提供關於該資料之用途或資料未來處理以及自動化決策如何影響資料主體的重要訊息。例如,在信用評等的情況下,應有權知道其資料處理的基礎,資料主體並能對其作出正確與否的決定,而不僅僅是關於決策本身的資料。   「法律效果」是指對某人的法律權利有影響,或者影響到個人法律關係或者其契約上權利。   工作組並未將GDPR前言71段視為絕對禁止純粹與兒童有關的自動決定,指出僅在某些情況下才有其適用(例如,保護兒童的福利)。   在基於自動化處理(包括分析)以及基於哪些決策產生法律效應或類似顯著效果的基礎上對個人方面進行系統和廣泛評估的情況下,進行資料保護影響評估並不局限於「單獨」自動化處理/決定。

醫療科技公司轉型提供資料類型產品解決方案於美國之智財權布局建議

醫療科技公司轉型提供資料類型產品解決方案於美國之智財權布局建議 資訊工業策進會科技法律研究所 2023年05月31日 過去,醫療科技公司僅專注於開發針對醫療問題的硬體解決方案,近年這些企業則致力於轉型開發收集及利用大量病人、資料提供者資料之產品,而轉變成資料平台公司,而更可以全面了解病人及客戶生活習慣及健康狀況。 其中許多解決方案均利用人工智慧(Artificial Intelligence, AI)及機器學習(Machine Learning, ML),相較傳統上研發成果多為硬體設備,現今則轉變成出現大量軟體解決方案,保護研發成果之方式將發生改變,如何選擇合適的智慧財產權保護研發成果成為企業重要課題,此亦影響企業如何做智慧財產布局及擬定公司相關經營策略,因此建議企業——尤其是開發醫療資訊平台之醫療科技公司,特別是致力於開發醫療器材軟體(Software as a Medical Device, SaMD)、醫療設備嵌入式軟體(Software In a Medical Device, SiMD)及應用於醫療技術中的人工智慧等新興領域時可以參考以下提供之思考方向選擇對於企業發展最適切之智慧財產權保護態樣。[1] 研發成果如欲獲得專利保護,該發明必須係獨一無二且可以傳授的——即人們不能將自然發生或不可再現的事物申請專利,因為發明需透過專利以清楚的方式概述,並明確定義專利內容,並向公眾揭露,以便於申請人取得專利、並於專利期限屆滿後(專利保護期限因各國法規、專利類型而將有所不同,建議企業應了解欲布局之國家相關法規規定,如台灣之發明專利[20年]、新型專利[10年]、設計專利[15年]),使大眾得藉以實施該技術內容。[2] 在美國,專利係由美國專利商標局賦予所有權人於一定期間內壟斷其發明之權利,即美國聯邦法律更使專利所有權人在專利權效期內得以禁止他人於該期間內於美國製造、使用、銷售或進口至美國這項已獲得專利保護之發明,此給予專利權人一個得以建立一個阻止他人進入市場的巨大障礙,可防止競爭及保護專利權人可以自由實施該權利。[3] 因專利有上述特性,文章作者建議,如裝置(device)、該裝置使用之軟體,對於從事新藥開發之藥廠,於保護新穎成分(New Chemical Entities)、相關之治療方法及人工智慧相關發明較適合以專利保護。[4] 營業秘密係指資訊擁有者已盡合理努力保密,且不為公眾所周知或非可被公眾輕易探知而具有獨立經濟價值的,任何形式及類型之資訊。合理努力可能包括(但不限於),要求員工簽署保密協議、定期提醒員工其負有保密義務(如:針對職務不同/所從事不同工作之員工,保密義務內容、程度、時間是否有所不同?)、踐行必要而知悉(need to know) 原則(如:執行不同工作之人員是否可互相存取各自的資料? 抑或僅能存取自己工作所需之資料?)、佈署IT安全措施或辦公室安全措施之狀況(如:是否有門禁?資料如有異常存取狀況時是否有示警機制?)並須即時調查及採取行動打擊涉及盜用營業秘密之行為(如:是否有相關通報不當使用營業秘密之管道及監控機制?)[5] 在美國,傳統上營業秘密之保護是結合各州法律而成,除了紐約州及北卡羅萊納州以外,所有州都頒布了其特有版本的《統一營業秘密法》(Uniform Trade Secrets Act, UTSA)——係一項1979年頒布的統一法案。於2016年,國會又頒布了《保護營業秘密法Defend Trade Secrets Act, DTSA》,該法案保障當事人於聯邦法院提起營業秘密訴訟之權利,且只要促進犯罪行為之行為發生於美國,當事人即可於國外進行訴訟,此外,《統一營業秘密法》中規定營業秘密包含公式、模式、彙編、程式、設備、方法、技術或過程。而依《保護營業秘密法》(Defend Trade Secrets Act, DTSA),營業秘密可為任何形式,無論係以物理、電子、圖形、攝影或書面形式儲存、編輯或紀錄之財務、商業、科學、科技、經濟或工程資訊均為營業秘密之範疇,因此,營業秘密之適用範圍較廣,於美國甚至抽象之想法均可受營業秘密保護。[6] 與僅提供有限保護期限之專利有別,如欲獲得營業秘密之保護,僅需資訊持續保密並存在並持續存有價值,該資訊即會持續受到營業秘密保護並擁有無限的有效期限,亦即,只要該資訊仍為秘密,即受到營業秘密之保護。如:可口可樂已將其配方作為營業秘密保護了130多年之久。惟與專利不同的是營業秘密一但被公眾周知或得以透過適當方式獨立開發(如競爭對手自己獨立開發而產出之資訊),就將失去營業秘密之保護。[7] 因為營業秘密之特性,諸如蛋白質結構、客戶清單、機器學習演算法、原始碼、化學製程參數(如:會產生化學反應之溫度或壓力)、甚至是醫療科技公司近年致力經營的人工智慧領域所產出的人工智慧、新的模型訓練方法、優化模型參數、消極專有技術(如:不該做什麼)。[8] 惟選擇專利抑或營業秘密之方式保護其研發成果將視企業的業務為何決定,如缺乏透明度之產業可能較適合以營業秘密方式保護,而非專利。例如:網路安全公司可能傾向於營業秘密保護,因為申請專利揭露其機密安全演算法可使競爭對手開發競爭產品或使駭客進行量身訂製之攻擊。相較之下,製造容易檢測、針對消費者之電子產品之企業更依賴專利保護,製造具有行業標準化品質之產品之企業亦是如此。[9] 總體而言,是否容易被逆向工程將會是決定以專利或營業秘密保護之關鍵性調查方式。因申請專利必須揭露細節事項,將對廣泛保護資料為基礎之軟體(且有使用人工智慧或機器學習)較具挑戰性,故專利較適合保護裝置(device)及會相互作用之實體產品和軟體。而營業秘密則要求資料所有人無限期地維持秘密性,亦須注意自己的想法獲得他人關注時遭仿效之風險,故較適合造價高或難以仿效的軟體、製造方法或產品。[10] 而對於生技醫療公司而言,其應考量使用混和策略以保護人工智慧相關之創新,如:專有之原始和訓練資料、模型之優化參數、將專有技術用於訓練模型及其他難以進行逆向工程之人工智慧相關的此類機密資訊,可能較適合用營業秘密保護,同時該技術的其他方面,如人工智慧系統或使用其開發之藥物則可透過專利保護。[11]惟不論企業決定要將該資訊做為營業秘密保護或申請專利保護,企業對於研究人員發表相關資訊的行為均應審慎評估,避免因揭露而喪失專利之新穎性或營業秘密之秘密性的情形。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]Kristin Havaranek, Martin Gomez, Matt Wetzel, Steven TJoe & Stephanie Philbin, Top 5 IP Considerations for Medtech Companies Transitioning To Data-enabled Product Solutions (2023), https://medcitynews.com/2023/01/top-5-ip-considerations-for-medtech-companies-transitioning-to-data-enabled-product-solutions/ (last visited June 1,2023). [2]John Quinn, Protecting Inventions Through Patents and Trade Secret (2023), https://www.newsweek.com/protecting-inventions-through-patents-trade-secrets-1788352 (last visited May 30, 2023). [3]Id. [4]Charles Collins-Chase, Kassanbra M. Officer & Xinrui Zhang, United States: Strategic Intellectual Property Considerations For Protecting AI Innovations In Life Sciences (2023), https://www.mondaq.com/unitedstates/trade-secrets/1276042/strategic-intellectual-property-considerations-for-protecting-ai-innovations-in-life-sciences (last visited May 30, 2023) [5]Id. [6]John Quinn, supra note 2. [7]Id. [8]Collins-Chase et al., supra note 4. [9]John Quinn, supra note 2. [10]Havranek et al., supra note 1. [11]Collins-Chase et al., supra note 4.

TOP