美國環保署提出汽車廢氣排放新標準以加速電動汽車發展

美國環保署(United States Environmental Protection Agency, EPA)為限制汽車廢氣排放污染物對環境造成的危害,根據美國《潔淨空氣法》(Clean Air Act, CAA)的授權,於2023年4月12日提出《2027年式輕型、中型商用車車型污染物排放標準》(Multi-Pollutant Emissions Standards for Model Years 2027 and Later Light-Duty and Medium-Duty Vehicles),以及《重型商用車溫室氣體排放標準-第三階段》(Greenhouse Gas Emissions Standards for Heavy-Duty Vehicles – Phase 3)這兩件汽車廢氣排放新標準,期加速電動汽車(Electric Vehicle, EVs)發展、加速潔淨交通轉型。

《2027年式輕型、中型商用車車型污染物排放標準》以及《重型商用車溫室氣體排放標準-第三階段》分別針對2027年到2032年所出廠的輕型商用車、中型商用車以及重型商用車的汽車廢氣排放標準做出更嚴格的新規範,預計將成為美國迄今為止最嚴格的汽車廢氣排放標準。目標是到2032年時,輕型商用車行駛每英里二氧化碳平均排放量下降至82公克,溫室氣體排放量相較於2026年車型年標準將減少56%;中型商用車行駛每英里二氧化碳平均排放量下降至275公克,溫室氣體排放量相較於2026年車型年標準則將減少44%。至於重型商用車,以重型拖曳機(heavy-haul tractors)為例,將從2027年車型年行駛每噸英里二氧化碳平均排放量48克,到2032年時下降至41公克左右。

根據這兩件汽車廢氣排放新標準,並未禁止化石燃料汽車的製造或銷售、亦未規範要求電動汽車的年製造量或年銷售量要達多少數量或比率,而是為汽車限定更嚴格的廢氣排放標準,因此,仍無疑地將迫使汽車製造商減少販售化石燃料汽車、加速推動電動汽車生產的腳步以符合新的排放標準規定。環保署預測汽車製造商在為符標準所採的相應作法之下將會大幅提高電動汽車在新車的銷售比率:到2032年時,電動汽車將佔輕型商用車新車銷量的 67%、中型商用車新車銷量的46%。而此累計可望到2055年時減少約100億噸的二氧化碳排放,相當於美國2022年二氧化碳總排放量的兩倍多。將有效減少有害空氣汙染、並大幅降低因空氣汙染所致的罹病風險以及過早死亡等危險。

藉由新的排放標準,將逐步淘汰化石燃料汽車的生產,加速潔淨交通轉型,有效應對氣候危機並提高全國各社區空氣品質。

相關連結
※ 美國環保署提出汽車廢氣排放新標準以加速電動汽車發展, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9012&no=645&tp=1 (最後瀏覽日:2025/11/21)
引註此篇文章
你可能還會想看
歐盟針對體外診療器材提出新管制架構,預期將於2015年正式實施

  歐盟對於體外診療器材(In Vitro Diagnostic Medical Devices,以下簡稱IVDs)之管制,最早起始於1998年的體外診療器材指令(Directive 98/79/EC on In Vitro Diagnostic Medical Devices,以下簡稱「1998年IVDD指令」),該指令依IVDs是否具有侵入性、接觸病人的時間長短及是否需要能源加以驅動等條件,進一步區分為四種風險等級:第1級(Class I)-低風險性、第2a級(Class IIa)-低至中風險性、第2b級(Class IIb)-中至高風險性、第3級(Class III)-高風險性。Class I因風險性最低,故1998年IVDD指令僅要求廠商建立品管系統、保留產品技術檔案、並自為符合性聲明後,即得於市場上流通;Class IIa與Class IIb則由於風險略高,所建立之品管系統需經過「符合性評鑑」;而Class III的風險最高,故其品管系統除須符合前述要求外,更應由經歐盟認證的代檢機構(Notified Body)進行審查,通過前述評鑑及審查後,始可於歐洲市場流通使用。   然而,隨著科學及技術的進步,市場上不斷出現創新性的產品,使得1998年IVDD指令已逐漸無法滿足管理需求,輔以各會員國對於指令的解釋和實施各有不同,致使歐盟內部在病患及公共健康的保護上有程度不一的落差,為歐盟單一市場的運作埋下隱憂。因此,歐盟執委會(European Commission)於2012年9月26日提出新的管制架構(Proposal for a Regulation of the European Parliament and of the Council on in vitro diagnostic devices),其主要變革包括: 1. 擴大IVDs的定義:將IVDs的範圍擴及用以獲取醫療狀況或疾病罹患傾向資訊(如基因檢測)的器材及醫療軟體(medical software)等。 2. 新的分類標準及評估程序:將診療器材重新分為A、B、C、D四類,A類為風險最低,D類為風險最高。A類維持原先1998年IVDD指令中的廠商自我管控機制,但當A類器材欲進行臨床測試(near-patient testing)、具備評量功能或用於殺菌者,須先由代檢機構就其設計、評量功能及殺菌過程進行驗證。B類器材因風險略高,故須通過代檢機構之品管系統審查;C類產品除品管系統審查外,需再提交產品樣本的技術文件;而D類由於風險最高,除前述品管系統審查外,需經過核准使能進入市場。至於A、B、C、D類產品進入市場後,代檢機構會定期進行上市後(the post-market phase)監控。 3. 導入認證人員(qualified person,簡稱GP):診療器材製造商應於組織內導入GP人員,負責確保製造商組織內部的一切法令遵循事宜。 4. 落實提升透明度(transparency)之相關措施:為確保醫療器材的安全性和效能,要求:(1) 歐盟市場內之經濟經營商(economic operator)應能夠辨認IVDs的供應者及被供應者;(2) 製造商應將單一裝置辨識碼(Unique Device Identification)導入產品中,以利日後之追蹤;(3) 歐盟單一市場中的所有製造商及進口商,應將其企業及產品資訊於歐洲資料庫(European database)中進行註冊;(4) 製造商有義務向大眾公開高風險性裝置的安全性與效能等相關說明資訊。   歐盟執委會已提交新管制架構予歐洲議會,若順利通過將可望於2015年起正式實施,未來將對歐洲IVDs產業有何影響,值得持續觀察之。

歐盟正式通過資料治理法(DGA),歐盟資料共享發展跨出一大步

  歐盟理事會(Council of the European Union)於2022年5月16日正式通過了資料治理法(Data Governance Act, 簡稱DGA),本法是歐盟執委會(European Commission)於2020年11月提案,經過一年多的意見徵詢與協商,歐盟議會(European Parliament)於今(2022)年4月6日以501票贊成通過,隨後由歐盟理事會通過公布,本法預計將於2023年8月正式生效。   DGA包含幾大面向,除了針對資料中介服務(data intermediation)、資料利他主義(data altruism)、歐盟資料創新委員會(European Data Innovation Board)等機制建立的規定外,在第二章特別針對公部門所持有之特定類別資料的再利用(reuse)進行規定。當公部門持有的資料涉及第三方受特定法律保護的權利時(如涉及第三方之商業機密、智慧財產、個資等),本法規定公部門只要符合特定條件下可將此類資料提供外界申請利用;若為提供符合歐盟整體利益的服務且具有正當理由和必要性的例外情況下,得授予申請對象專有權(exclusive rights),但授權期間不得超過12個月;歐盟應以相關技術確保所提供資料之隱私和機密性。   再者,各會員國應指定現有機構或創建一個新機構擔任提供上述資料類型的單一資訊點(Single Information Point, SIP),以電子方式公開透明地提供資料清單,包含可申請利用之資料的來源及相關描述(至少包含資料格式、檔案大小、再利用的條件等),以提供中小企業、新創企業便利、可信的資料查詢管道。此外,歐盟執委會應建立一個單一近用點(Single Access Point, SAP),提供一個可搜尋公部門資料的電子登記機制(a searchable electronic register of public-sector data),讓使用者得直接搜尋各會員國單一資訊點(SIP)中所提供的資料及相關資訊。   DGA是歐盟2020年2月發布歐盟資料戰略(European Data Strategy)後的第一個立法,歐盟希望透過本法建立一套能提升資料可利用性和促進公私部門間資料共享的機制,以創造歐盟數位經濟的更高價值。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」

  美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。   為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。

行動上網吃到飽對電信產業之影響

  隨著4G開台,各家電信業者為獲取用戶數,爭相推出無限上網吃到飽方案,然在數據流量呈現爆炸性成長下,電信業者之收益卻持續下探。為解決此問題,本研究嘗試提出建議方案,期望實現我國對數位經濟之願景。

TOP