美國環保署提出汽車廢氣排放新標準以加速電動汽車發展

美國環保署(United States Environmental Protection Agency, EPA)為限制汽車廢氣排放污染物對環境造成的危害,根據美國《潔淨空氣法》(Clean Air Act, CAA)的授權,於2023年4月12日提出《2027年式輕型、中型商用車車型污染物排放標準》(Multi-Pollutant Emissions Standards for Model Years 2027 and Later Light-Duty and Medium-Duty Vehicles),以及《重型商用車溫室氣體排放標準-第三階段》(Greenhouse Gas Emissions Standards for Heavy-Duty Vehicles – Phase 3)這兩件汽車廢氣排放新標準,期加速電動汽車(Electric Vehicle, EVs)發展、加速潔淨交通轉型。

《2027年式輕型、中型商用車車型污染物排放標準》以及《重型商用車溫室氣體排放標準-第三階段》分別針對2027年到2032年所出廠的輕型商用車、中型商用車以及重型商用車的汽車廢氣排放標準做出更嚴格的新規範,預計將成為美國迄今為止最嚴格的汽車廢氣排放標準。目標是到2032年時,輕型商用車行駛每英里二氧化碳平均排放量下降至82公克,溫室氣體排放量相較於2026年車型年標準將減少56%;中型商用車行駛每英里二氧化碳平均排放量下降至275公克,溫室氣體排放量相較於2026年車型年標準則將減少44%。至於重型商用車,以重型拖曳機(heavy-haul tractors)為例,將從2027年車型年行駛每噸英里二氧化碳平均排放量48克,到2032年時下降至41公克左右。

根據這兩件汽車廢氣排放新標準,並未禁止化石燃料汽車的製造或銷售、亦未規範要求電動汽車的年製造量或年銷售量要達多少數量或比率,而是為汽車限定更嚴格的廢氣排放標準,因此,仍無疑地將迫使汽車製造商減少販售化石燃料汽車、加速推動電動汽車生產的腳步以符合新的排放標準規定。環保署預測汽車製造商在為符標準所採的相應作法之下將會大幅提高電動汽車在新車的銷售比率:到2032年時,電動汽車將佔輕型商用車新車銷量的 67%、中型商用車新車銷量的46%。而此累計可望到2055年時減少約100億噸的二氧化碳排放,相當於美國2022年二氧化碳總排放量的兩倍多。將有效減少有害空氣汙染、並大幅降低因空氣汙染所致的罹病風險以及過早死亡等危險。

藉由新的排放標準,將逐步淘汰化石燃料汽車的生產,加速潔淨交通轉型,有效應對氣候危機並提高全國各社區空氣品質。

相關連結
※ 美國環保署提出汽車廢氣排放新標準以加速電動汽車發展, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9012&no=67&tp=1 (最後瀏覽日:2026/01/31)
引註此篇文章
你可能還會想看
歐洲議會通過特定一次性塑膠產品禁令

  歐洲議會於2019年3月27日通過特定一次性塑膠產品禁令,該禁令最初由歐盟執委會於2018年5月提出作為「歐盟塑膠戰略」(EU Plastics Strategy)的一部份,其旨在減少特定塑膠產品對環境(特別是水生環境)及人類健康之影響, 同時促進轉向循環經濟,發展創新永續的商業模式。該禁令之規範重點如下: (1) 使用限制:規定若得以其他更環保物質替代的一次性塑膠產品(如棉花棒、一次性餐具、吸管、氣球棒等等) 至遲須於2021年前全面下架;而對於目前無更環保物質可替代的一次性塑膠產品,歐盟各成員國必須採取措施降低其銷售量;另外,自2024年開始,塑膠飲料容器僅限瓶蓋與瓶身有相連設計者,始可上市。 (2) 標示義務:對於被列管的一次性塑膠產品,必須標示其塑膠成分及含量、正確的棄置方式、以及任意棄置對環境的負面影響。 (3) 責任延伸:規定受本禁令所列管一次性塑膠產品之製造商,應按比例分擔有關其產品後續之清除、回收處理及公共教育宣傳成本。 (4) 訂定分類回收比率:訂立廢棄物分類回收量化目標,要求至2025年,一次性塑膠產品的正確分類回收率至少應達77%;至2029年達90%。 (5) 訂定再生料投入比率:規定自2025年開始,製造聚乙烯對苯二甲酸酯(Polyethylene Terephthalate, PET)塑膠飲料容器至少應使用25%的再生塑膠;而自2030年開始,至少使用30%;另要求歐盟執委會最遲應在2022年1月1日前制定相關行動方案及法令,以計算及核實前述再生塑膠使用目標。 (6) 環保教育義務:課予會員國採取措施以提高消費者認知以下事項之義務:(A)任意棄置一次性塑膠產品及塑膠漁具之環境負面影響(B)一次性塑膠產品及塑膠漁具之回收再利用系統與廢棄管理方案。   本禁令即將完成立法程序,只待歐洲理事會(European Council)正式批准並刊載於公報後,即能成為正式的歐盟指令,成員國嗣後應於2年內將指令中之各項要求轉化成國內法律。

美國聯邦貿易委員會推動「不留痕」機制,使消費者可選擇不在網路上留下個人資訊

  美國聯邦貿易委員會(Federal Trade Commission ,FTC)最近開始推動一套「不留痕」(do-not-track)機制,旨在防止網站蒐集未經使用者授權之個人資料。 FTC所出具的報告,旨在幫助政策制訂者和立法者形塑隱私規則,同時要求網站揭露更多其所蒐集之資料的相關事項,諸如蒐集的資料種類、如何使用該資料、以及保存期間。該報告並建議企業提供使用者更多拒絕被蒐集資料的退出選擇方案。     FTC主席Jon Leibowitz在最近的記者會中指出,目前有許多尚未受到網路隱私規範之行銷方式,普遍受到廣告商、社群網站或是搜尋引擎運用。FTC當局的建議由五人所組成的委員會無異議通過,由於網路廣告商、媒體經營者以及零售商所建立的新的行銷模式均建基於個人資料的使用上,因此此建議亦同時考量到該等業者之利益平衡,至2011年1月31日前持續蒐集業者之意見。Leibowitz表示,FTC希望確保新興成長的資訊市場是建立在促進隱私、透明、商業革新和消費者選擇的框架上,而這也是多數美國民眾所希望的。」     此一「不留痕」機制是參照FTC另外一套受歡迎的「勿來電」機制,也就是將電話號碼註冊在一特定的名單上,以防止電話推銷員來電,不過實際上的運作模式仍略有差異。相較於將姓名註冊在一份中央管控的名單,此一機制則是透過網頁瀏覽器的工具,傳送不願被追蹤或接受特定廣告的訊息,Google、Microsoft和 Mozilla都已測試過此套技術。     在此一報告提出後不久,麻州參議員John F. Kerry表明他將會推動一部隱私權相關法律,使FTC有更多規則制訂權以實現其報告所提建議。因為作為相關主管機關,FTC制訂規則的權利其實很有限。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

紐西蘭內政部發布新版VASP指引,因應虛擬資產轉帳納入監管

紐西蘭內政部於2024年7月25日發布新版洗錢防制與打擊資助恐怖主義(Anti-Money Laundering and Countering Financing of Terrorism, 以下均簡稱AML/ CFT)指引(下稱指引),指導虛擬資產服務提供者(virtual asset service providers, 下稱VASPs)遵循虛擬資產交易行為準則與注意事項。該國有關AML/ CFT之規定係以多項規則與行為指引構成,且應技術、產業與國際標準之變革持續調整既有框架。本次指引更新係為配合AML/ CFT法(AML/ CFT Act 2009)及其規則之修正與生效,重新規範VASPs對於虛擬資產轉帳再定義後義務。以下針對法規變革脈絡簡要說明: AML/ CFT規則(AML/ CFT (Definitions) Regulations 2011)將虛擬資產定義為具有價值的數位貨幣,可用於交易、達成支付或投資目的;雖其不等同於債券、股票與衍生性金融產品或數位法定貨幣,VASPs仍為AML/ CFT法定義之報告實體,負有對客戶進行盡職調查、報告特定業務活動與交易的義務。 自2024年6月起,AML/ CFT規則全面納管虛擬資產轉帳,範圍由法定貨幣與虛擬資產間的流動,擴及虛擬資產間的交易,包含以VASPs作為中介機構之交易情形。此外,基於虛擬資產跨境的特性,所有轉帳皆被推定為國際轉帳,除非VASPs確定該筆交易發生紐西蘭境內。AML/ CFT規則對虛擬資產平臺交易之監管密度係以1,000紐幣為閾值,VASPs須對超過此金額的國際轉帳,向金融情報中心(Financial Intelligence Unit, FIU)提送交易報告;而對於臨時性交易則應盡職調查客戶。 為降低虛擬資產被用於非法活動之風險,防制洗錢金融行動工作組織(FATF)倡議於國際施行一致之監管標準,避免因各國法規監管差異造成防堵漏洞。紐西蘭政府藉改造現行金融法規將相關產業逐步納入監管,並提供指引說明及闡釋法規內容,調適金融科技發展與現有制度規範落差。此次AML/ CFT規則與VASPs指引之修正,將有助於紐西蘭更符合國際組織建議之洗錢防制與反資助恐怖活動監管標準。

TOP