日本第52次知的財產戰略本部會議決議—推動著作權資訊橫向跨域查找平台
資訊工業策進會科技法律研究所
2023年09月01日
創作內容的流通利用是發揮文化經濟力的核心關鍵,但數位時代的來臨,造成內容流通利用面臨創作資訊分散難找、權利歸屬識別困難,以致內容無法有效利用的問題。此問題並非個別企業、機構可以解決,而需要政府出面橋接既有創作資料庫,匯集散落於各處的內容創作資料及創作人資訊。
壹、事件摘要
日本岸田首相於2023年6月9日在官邸召開第52次知的財產戰略本部會議,針對「知的財產推進計畫2023」進行討論並決定[1]。日本基於為了活化日本的創新並實現持續的經濟增長,將社會轉變為最大限度發揮知的財產價值的社會的目的,提出2023知的財產推進計畫的三大重點,包括:第一,強化新創企業和大學的知的財產生態系統,透過新創企業等管道迅速實現大學研究成果的社會應用循環;第二,促進負責任和可信賴的AI,兼顧促進AI技術應用和維持知的財產創造的激勵,同時對風險採取必要的措施;第三,發揮內容產業力量推動內容產業的強化和結構改革,進行政府和民間的合作促進內容創作;從促進內容的創作和使用循環的角度出發,建立簡單而統一的權利處理窗口機構,並推進跨領域的權利資訊搜索系統的建立。
貳、重點說明
目前網路上的業餘創作者等創作的內容越來越多,但此類內容使用的可行性因權利者資訊不明確,造成獲得許可所需的成本過高,成為便利的數位時代造成的不便利後遺症。日本「知的財産推進計畫」於2022即已針對著作權制度進行改革方向,開始推動實現簡單且一體化的權利處理,加速內容的流通和創作者的報酬回饋,力圖實現簡潔統一的權利處理制度,以促進內容的「創作」和「利用」循環[2]。
日本注意到隨著內容的主要流通轉向網絡播送,對於業者而言,實現內容差異化,包括對留在手上的播送內容檔案再利用,對強化競爭至關重要。但涉及多個權利持有人的內容,其權利處理成為取得授權的瓶頸,導致內容的利用無法推進。基於簡便化權利處理和報酬支付的政策想法,日本於今(2023)年提出修改著作權法,創建新的作品使用法定授權申請制度,並在同年5月修改法案獲得通過[3]。依據此新通過的授權申請制度,日本文化廳可以針對未授權集體管理或權利人提供利用意願不明的著作,裁定可由利用人支付補償金以順利實現對這些作品於特定時間內的利用。
除建立授權意願不明的利用授權法令依據外,日本亦擬在實務上建立配套機制,即透過數位化、一體化的流程設計,規劃建立能夠跨領域尋找著作權資料的資料庫,以利確認權利資訊和使用許可的意願表示。而針對橫向跨域的權利資訊資料庫的構建,日本特別成立研究小組,於2022年12月「跨域權利資訊資料庫研究報告」。該報告提出連接各領域資料庫來檢索資訊的「領域橫向權利資訊檢索系統」的規劃。依該規劃,日本文化廳將與保有各領域資料庫的相關利害關係人合作,推進系統的設計和開發在新著作權法的實施期間,建立並運營「領域橫向權利資訊檢索系統」,以連接各領域資料庫[4]。
該系統將力求實現數位化程度最高的設計,除了與各領域資料庫連接外,還將包括設置統一的窗口組織來執行新的授權利機制,設法使未在現有資料庫中收錄的內容(如僅在網絡上創作的內容、未集中管理的著作等)能夠順利登錄,並提供確認權利資訊和使用許可意願表示的功能。為了簡化流程和加快速度,這些窗口組織(機構)將由經文化廳長官認可的單位擔任,負責申請受理、審議確認和(應支付的使用)報酬審定等程序。另外,對於擬取得無期限的授權使用的利用人,可以利用不明著作授權制度,並可透過這些窗口組織簡化相關授權程序[5]。
參、事件評析
日本已考慮到數位時代的資訊變化速度,認為應該在著作權制度和相關政策改革方面,推動公私協力尋找權利者、確認使用可行性的合作,規劃建立跨領域權利資訊檢索系統,以利最大限度地實現新裁定授權制度的簡化和迅速處理,以實現其戰略綱領持續著力的內容「創作」和「利用」循環的加速。
而促進內容「創作」和「利用」循環加速的做法,日本不只是建立法令依據,是透過資訊科技與認證適格單位,用完整而全面性的配套措施進行推動。顯見日本已注意到資訊科技可以降低、便利權利資訊的登錄,讓權利人不會因為登錄作業麻煩而意願欠缺;而與既有資料的串接,則可在不會喪失保有各自資料庫的保障下,快速建立資料完整的檢索查詢平台。因此日本預計2023年將首先確定要優先合作的資料庫、研究合作方式、建立檢索介面的概念;同時對未集中管理的著作等內容的權利資訊登記方法進行需求調查和探討,預計於2024年度將研析該系統應具備的細部功能規格[6]。
而既有除了系統工具外,為促進新的權利處理制度的實現,由於資料分散在不同地方,相較於單一的官方登錄或受理平台,多元的受理窗口更能便利的登錄、受理做法,日本考慮與數位/網路出版等網上內容流通的中介者共同協作,更能以適應數位時代的速度為基礎與先進技術的應用,順利實現新制度的準備和持續營運。
我國原創文化內容的流通利用面臨與日本智財戰略綱領相同的議題,也已經在文化部的計畫支持下建置「文化內容流通利用服務網(Copyright Hub)」受理著作的自主登錄與權利資訊查詢,同時規劃透過認證、指定的方式,建立類似日本智財戰略綱領規劃的多元登錄受理代理窗口,與既有內容平台或特定文創領域專業法人合作,以利串接大量既有資訊;並預計逐步於文創獎補助中納入登錄著作權利資訊的要求,以促進資訊的完整。
然本次文創法送立法院修法的草案,並未納入原已新增的流通利用草案條文,不僅欠缺日本賦予的授權機制,以及資料庫、認證適格窗口的推動法令依據,也無法立即促成獎補助中納入登錄著作權利資訊的要求。我國「文化內容流通利用服務網(Copyright Hub)」早於日本起步,期待即便無法如同日本建立法令依據,亦可在文創獎補助連結的加持下快速推展,讓我國文化內容的流通利用推動持續領先,成為其他國家之參考標竿。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
[1]〈知的財産戦略本部総理の一日〉,首相官邸ホームページ,令和5年6月9日,https://www.kantei.go.jp/jp/101_kishida/actions/202306/09chizai.html。
[2]〈知的財産推進計畫2023〉,頁77,https://www.kantei.go.jp/jp/singi/titeki2/230609/siryou2.pdf (最後瀏覽日:2023/08/22)。
[3]〈令和5年通常国会 著作権法改正について〉,文化庁,https://www.bunka.go.jp/seisaku/chosakuken/hokaisei/r05_hokaisei/ (最後瀏覽日:2023/08/22)。
[4] 同前註2。
[5] 同前註2,頁78。
[6] 同前註2,頁78。
為落實美國食品安全現代化法有關食品追溯與風險控管安全認證規定,美國食品藥物管理局(U.S. Food and Drug Administration, FDA)於2015年11月13日公布「農產品安全規則」(The Produce Safety rule)、「第三方審核機構進行食品安全認證規則」(The Accredited Third-Party Certification rule)與「外國供應商審核規則」(The Foreign Supplier Verification Programs, FSVP)等三項實行細則。其中,「農產品安全規則」首次針對美國境內生產農場建立強制性安全標準,為種植、收獲、包裝和保存農產品建立基於科學的標準(包括水質、員工健康和衛生、野生和家養動物、動物源生物土壤改良劑以及設備、工具和建築物等各種要求)。 而在「第三方審核機構進行食品安全認證規則」與「外國供應商審核規則」主要係確保進口食品符合美國境內生產食品相同之安全認證標準,確保與美國食品追溯制度構聯。食品藥品管理局採用多管齊下的策略,包括與外地監管機關建立夥伴合作關係、檢查出口國的設施、要求進口商就進口食品安全負責,以及對進口食品進行針對性的檢測。
美國國家公路交通安全管理局公布車輛網路安全最佳實踐,呼籲業界遵循美國國家公路交通安全管理局(National Highway Traffic Safety Administration, NHTSA)於2022年9月9日公布2022年最新版本之當代車輛網路安全最佳實踐(Cybersecurity Best Practices for the Safety of Modern Vehicles),強化政府對先進聯網車輛網路安全之把關。 文件將網路安全實踐項目區分為「一般網路安全最佳實踐」及「車輛技術網路安全最佳實踐」兩塊,前者主要為公司整體組織網路安全文化與監管機制之建立;後者則偏重於技術性的建議內涵。 「一般網路安全最佳實踐」共有45項要點,核心概念為:公司應訂定明確的網路安全評估程序,由領導階層負責相關監督責任,定期執行網路安全之風險評估及第三方公正稽核,並對其所發現之風險弱點採取保護措施並持續監控,同時應妥善保存所有網路安全相關之紀錄文件,並鼓勵與車輛同業聯盟彼此分享學習經驗。對於組織成員應適當提供網路安全教育訓練。於產品設計時,應將產品使用者、售後服務維修商,以及可能的外接式電子設備所帶來之風險一併納入安全設計考量。 「車輛技術網路安全最佳實踐」共有25項,核心理念為:對於產品開發人員,應建立存取權限管理,避免有心人士濫用權限。產品所使用的加密技術應隨時更新,若車輛具備診斷功能,應慎防遭到不當利用,且應防止車輛所搭載之感測器遭到惡意干擾或改動,感測器所收集到之資料則應能免於網路攻擊或竊取。應特別注意無線網路設備、空中軟體更新(Over-the-air, OTA)以及公司作業軟體所產生之風險漏洞。 本文件屬於自願性質,無法律強制力。但NHTSA期望在現有的車輛產業網路安全標準上,例如國際標準組織與國際汽車工程師協會(International Standards Organization, ISO/SAE International, SAE)先前所訂定的車輛網路安全標準ISO/SAE 21434的基礎前提下,進一步提出政府對車輛網路安全要求的努力。
日本農業數據協作平台WAGRI開始自主營運「日本農業數據協作平台」(簡稱WAGRI)於2017年內閣府計畫的支持下,委由慶應義塾大學建立,該平台具備農業數據相容、數據共有與數據提供三大機能,日本IT企業NTT、富士通、農機大廠久保田、洋馬等均已加入WAGRI試營使用行列。今(2019)年該平台將移轉予國立研究開發法人農業食品產業技術總合研究機構(下簡稱農研機構),正式開始進入商業模式營運。欲利用WAGRI之機關除須向WAGRI協議會(由農業法人、農機製造商、ICT供應商、學研機構組成,以提出建議改善、普及WAGRI為其立會宗旨)遞交「入會申請書」外,亦須向農研機構遞交「利用規約」、「數據提供利用規約」與「規約同意書兼利用申請書」。 自主營運後,原先不收費方式已變更,欲利用WAGRI之機關依據以下兩種利用平台方式,須繳納不同的費用: 數據利用(利用WAGRI數據者)、數據利用提供者(利用WAGRI數據且提供數據予WAGRI者) 平台利用月費5萬日圓 若利用有償數據時,須另外支付數據使用費 數據提供者(提供數據予WAGRI者) 平台利用月費3萬日圓 僅提供無償數據的數據提供機關,原則上不需要繳納平台利用費 我國為發展智慧農業,智慧農業共通資訊平台有提供免費OPEN DATA介接功能,近年發展智慧農業之農企/機關團體,亦有建立平台作為內部蒐集、利用數據之用,例如弘昌碾米工廠建置水稻健康管理與倉儲資訊服務平臺,未來該類平台均有可能朝商業模式發展。WAGRI建立一套商業模式嘗試自主營運,後續將持續追蹤WAGRI營運狀況作為我國智慧農業平台之運作參考。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。