用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限
資訊工業策進會科技法律研究所
2023年09月08日
生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。
惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。
壹、事件摘要
Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。
R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。
貳、生成式AI應用之潛在風險
雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]:
一、能源使用及對環境危害
相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。
二、能力超出預期(Capability Overhang)
運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。
三、輸出結果有偏見
生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。
四、智慧財產權疑慮
生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。
五、缺乏驗證事實功能
生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。
六、數位犯罪增加與資安攻擊
過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。
七、敏感資料外洩
使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。
八、影子AI(Shadow AI)
影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。
參、事件評析
在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。
當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。
雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。
[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).
[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).
[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).
[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).
[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
為釐清自駕車事故發生時,該如何適用日本《汽車賠償法》相關規定,國土交通省於2016年11月設置「自動駕駛損害賠償責任研究會」,檢討︰(1)自動駕駛是否適用《汽車賠償法》上運用供用者概念?(2)汽車製造商在自動駕駛事故損害中應負何種責任?(3)因資料謬誤、通訊不良、被駭等原因導致事故發生時應如何處理?(4)利用自動駕駛系統時發生之自損事故,是否屬於《汽車賠償法》保護範圍等議題,並於2018年3月公布研究報告。針對上述各點,研究會認為目前仍宜維持現行法上「運行供用者」責任,由具有支配行駛地位及行駛利益者負損害賠償責任,故自駕車製造商或因系統被駭導致失去以及支配行駛之地位及行駛利益者,不負運行供用者責任。此外,研究報告亦指出,從《汽車賠償法》立法意旨在於保護和汽車行駛無關之被害者,以及迅速使被害者得到救濟觀之,自動駕駛系統下之自損事故,應仍為《汽車賠償法》保護範圍所及。
日本提出「放送法施行規則」修正草案,強化智慧防救災訊息發佈設備整備措施日本總務省鑒於311地震時媒體播送的減災效果,在2014年2月14日對日本放送法施行規則的部分修正展開公眾諮詢。此次的修正係基於放送法母法第108條規定。依據該條的規範,基幹放送業者在進行國內的廣播時,若發生暴風、豪雨、洪水、地震、大型火災或有發生之虞時,為預防其發生或減輕其所造成之損害,應進行有效之廣播。 蓋日本在311災後,因其對對社會所產生巨大的衍生影響,後續規劃研擬了許多因應法制政策及措施。根據日本內閣府「2013年防災白皮書」,日本政府在311地震後所規劃政策方向及重要施政措施有:防災對策推進會議檢討會議的最終報告、災害對策法制的改正、與防災基本計畫的修正等各層面工作。 此外,依據日本防災對策推進會議檢討會議在2012年7月所完成之報告,其中對於災害立即回應體制的充實與強化,及建立綜合的防災資訊系統,建議應蒐集並提供必要之資訊,以盡早提供根本性的改善為目標。並且,為因應災害防救需要及強化即時應變能力,建立智慧防救災體系即屬刻不容緩,如何能運用各種多元性傳遞管道,落實將緊急性災害防救重要資訊傳送至每位國民,遂成關鍵議題。 而此次放送法施行規則的修正則擬增訂第86-2條,要求基幹放送業者應就基幹放送設備等向總務省所擬定的「基幹放送等整備計畫」;其中,關於母法108條廣播之確實實施而有特別必要者,並應取得總務省之確認。修正案擬增訂的101-2條除重複上述意旨,並要求總務省在確定確認上述計畫後,並應將公開其計畫的相關內容。 其中,對於地震防災對策特別措施法(地震防災対策特別措置法) 、水防法 與關於在土砂災害災害警戒區域內等的土砂災害防止推進的法律(土砂災害警戒区域等における土砂災害防止対策の推進に関する法律)等規範所訂定易受災區域內發信設備之設置,皆納入上述應被確認計畫的範圍。 日本屬地處地震頻繁國家,對於災害防救體系甚為重視,並投入大量資源加以發展。未來日本對於推動智慧防救災體系,是否會有更多進一步法制修改及調整,值得我們持續進行關注。
美國FDA計畫舉辦3D列印技術於醫療運用下之法制探討會議隨著3D印表機的價格日趨親民、3D列印設計檔案於網際網路交流越趨頻繁,以及預期3D列印技術在未來的應用會更加精進與複雜化,3D列印技術於醫療器材製造面所帶來的影響,已經逐漸引起美國食品藥物管理局(FDA)的關注。 在近期FDA Voice Blog posting中,FDA注意到使用3D列印所製造出的醫療器材已經使用於FDA所批准的臨床干預行為(FDA-cleared clinical interventions),並預料未來將會有更多3D列印醫療器材投入;同時,FDA科學及工程實驗辦公室(FDA’s Office of Science and Engineering Laboratories)也對於3D列印技術就醫療器材製造所帶來的影響進行調查,且CDRH功能表現與器材使用實驗室(CDRH’s Functional Performance and Device Use Laboratory)也正開發與採用電腦模組化方法來評估小規模設計變更於醫療器材使用安全性所帶來的影響。此外,固體力學實驗室(Laboratory of Solid Mechanics)也正著手研究3D列印素材於列印過程中對於醫療器材耐久性與堅固性所帶來的影響。 對於3D列印就醫療器材製造所帶來的法制面挑戰,在Focus noted in August 2013中,其論及的問題包含:藉由3D列印所製造的醫療器材,由於其未經由品質檢證是否不應將其視為是醫療器材?3D列印醫療器材是否需於FDA註冊登記?於網路分享的3D列印設計檔案,由於未事先做出醫療器材風險與效益分析,FDA是否應將其視為是未授權推廣等問題。 針對3D列印於醫療器材製造所帶來的影響,CDRH預計近期推出相關的管理指引,然FDA認為在該管理指引推出前,必須先行召開公聽會來援引公眾意見作為該管理指引的建議參考。而就該公聽會所討論的議題,主要依列印前、列印中與列印後區分三階段不同議題。列印前議題討論包含但不限於材料化學、物理特性、可回收性、部分重製性與過程有效性等;列印中議題討論包含但不限於列印過程特性、軟體使用、後製程序與額外加工等;列印後議題討論則包含但不限於清潔/多餘材料去除、消毒與生物相容性複雜度影響、最終裝置力學測定與檢證等議題。
德國聯邦議院通過能源效率法,節能目標將入法德國聯邦議院於2023年9月21日通過《能源效率法》(Energieeffizienzgesetz, EnEfG)草案,確立德國能源效率目標,並規範公部門及企業的具體效率措施,及首次定義資料中心的能效標準,本法並要求德國2030目標應符合歐盟能源效率指令(EU Energy Efficiency Directive, EED)。預計聯邦參議院將在10月底審議該法律,之後將盡快生效。本次修法重點如下: 1.能源效率目標:EnEfG規定2030年德國減少初級和最終能源消耗的目標,以及2045年減少最終能源消耗的目標。以最終能源消耗而言,此代表著2030年減少約500TWh(與目前水準相比)。未來,聯邦政府將在立法期開始時,定期向聯邦議院通報目標實現情況,並在必要時決定調整工具組合。 2.聯邦及各邦的節能義務:從2024年起,聯邦政府和各邦政府有義務採取節能措施。至2030年,聯邦及各邦的最終能源消耗每年各分別節省45TWh和3TWh。 3.公部門在節能減排方面樹立榜樣:為了使聯邦和邦層級的公部門在提升能源效率方面能做為表率,未來將導入能源或環境管理系統。此外,EnEfG也規定節能措施的實施,目標是每年最終能源消耗減少2%。 4.企業能源或環境管理系統:EnEfG要求能耗較大(超過平均7.5GWh)的企業導入能源或環境管理系統,最終能源消耗總量為2.5 GWh以上的企業,則需要在實施計畫中,記錄和公布節能措施。此種作法不僅提高能源消耗的透明度,同時也讓企業可自行決定導入哪些措施以及預計的成果。 5.資料中心的能源效率及餘熱要求:新的資料中心應遵守能源效率標準,還必須利用餘熱(Abwärme)。未來,所有大型資料中心營運商應使用再生能源電力,並於公共登錄冊中記載能源消耗的資訊,以及向客戶告知其具體能源消耗狀況。 6.餘熱的避免與利用:未來應盡可能避免生產過程中產生餘熱。如果無法避免,則應利用餘熱。此外,有關企業餘熱潛力的資訊將綁定並公布在一新平台上。