用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限
資訊工業策進會科技法律研究所
2023年09月08日
生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。
惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。
壹、事件摘要
Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。
R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。
貳、生成式AI應用之潛在風險
雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]:
一、能源使用及對環境危害
相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。
二、能力超出預期(Capability Overhang)
運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。
三、輸出結果有偏見
生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。
四、智慧財產權疑慮
生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。
五、缺乏驗證事實功能
生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。
六、數位犯罪增加與資安攻擊
過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。
七、敏感資料外洩
使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。
八、影子AI(Shadow AI)
影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。
參、事件評析
在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。
當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。
雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。
[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).
[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).
[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).
[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).
[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
OECD於2022年12月6日公布一份標題為「為中小企業永續發展提供資金—推動力、阻力和政策」(Financing SMEs for sustainability — Drivers, Constraints and Policies)的報告,報告中檢視現行支援中小企業參與永續金融的工具與政策,並指出政府在制定公共政策與支援措施時應考慮的要點,期能加速中小企業的綠色轉型。 報告中首先分析中小企業綠色轉型的阻力與推動力。在阻力方面,中小企業由於規模小,不易取得銀行的融資,也無多餘人力關注綠色議題與相關可用資源的發展,因此不敢貿然從事具有高度不確定性的綠色投資,綠色轉型意識普遍低落。更由於中小企業永續金融生態系的參與者廣泛,包括國際及國家法規和準則的制定者、政策制定者、永續資金提供者、ESG的中介機構等,這些永續機構、工具及實踐行動會隨著永續金融發展持續增加,令中小企業無所適從。在推動力方面,包含消費者的永續意識提升、越來越多金融機構與投資者將永續績效納入投資決策考量,以及氣候變遷與淨零轉型帶來的商機,皆使得中小企業有必要加強綠色轉型的努力,才能從淨零商機中獲利,免於陷入競爭劣勢。 為了提高中小企業綠色轉型的動機,OECD建議可透過財務性及非財務的支援,雙管齊下。目前財務性的支援以融資工具為主流,其它還有綠色基金、補助金、津貼、補貼、減稅、降低費用、股權或混合式的支援工具等。非財務性的支援則有與永續相關的技術支援、意見提供、諮詢服務和教育培訓等。這些主要是透過政府、金融機構、或是國際倡議進行,也有政府及民間機構獨自或合作建立的線上平台,提供一站式的服務,使得資源的取得更加便捷有效率。 中小企業永續金融仍存在許多問題需要進一步了解與因應,包括中小企業的淨零轉型意識與知識間的落差、永續金融資訊的不足、環境績效評量與報告能力的欠缺,以及該如何強化中小企業永續金融生態系,以增加永續金融的供需量等。OECD未來會繼續深入探究這些議題,支援落實「2022年G20/OECD更新中小企業融資高級別原則」(the 2022 Updated G20/OECD High Level Principles on SME Financing)中新增的「加強永續金融」原則,這顯示推動中小企業永續金融已是國際共識,我國政府與業者也應及早擬訂對策因應之。
美國聯邦交易委員會延展紅旗規則之施行日美國聯邦交易委員會(Federal Trade Commission,FTC)因應眾議院之要求,再次延展了紅旗規則(Red Flags Rule)之施行日,目前將由原先預定之2009年11月1日,延後至2010年6月1日施行。此規則最初預計於2008年11月1日施行,此次已是第四次延展。 所謂紅旗規則,原為「公平與正確信用交易法(Fair and Accurate Credit Transactions Act)」中之規定,依該法眾議院指示美國聯邦交易委員會及相關部門制定法規,用以規範金融機構及授信單位降低身分盜用之風險。基於此一指示,金融機構及授信單位必須研擬防止身分盜用的方案。詳言之,紅旗規則係要求凡管理使用包括性帳戶(covered account)者都應研擬並執行防止身分盜用之書面計劃。所謂的包括性帳戶係指:1.用於多次消費計算用途之帳戶,如信用卡帳戶、汽車貸款帳戶、手機帳戶、支票帳戶等;2.所有預期會產生身分盜用風險的帳戶,並不僅指於金融機構中所設立之帳戶。而前述應研擬之計畫將用以協助確認、偵測並解決身分盜用之行為。 由於只要用於支付計算,或有可能產生身分盜用風險之帳戶,均為包括性帳戶,而用於支付會計師款項之帳戶亦包含在內。惟美國會計師協會(American Institute of Certified Public Accountants, AICPA)要求FTC免除註冊會計師適用紅旗規則,該協會執行長Barry Melancon認為:「我們很在意紅旗規則的廣泛應用,因為我們並不認為當CPA之客戶付款時,會產生相當的身分冒用風險。」他指出該紅旗規則所帶來之負擔已超過其風險。AICPA並要求各州會計師協會去函對FTC表達排除適用之意見。而Melancon贊同FTC延後適用紅旗原則之決定,其並認為紅旗規則並無須廣泛運用於會計業,因為作為值得信賴的顧問,會計師對於其客戶應該都很熟悉,也會要求對身分資訊採取嚴格的隱私保護標準。 為了推動紅旗規則之適用,FTC已於紅旗規則之官方網站提供了該規則之適用綱領,並以座談會之方式對各團體進行運用之培訓。同時以出版企業之應用綱領,大量之文宣及宣導短片,對民眾提供諮詢服務等方式推廣紅旗規則。 而司法實務界對於此一規則之適用範圍亦開始表達其見解,在2009年10月30日,哥倫比亞地方法院判決律師業不適用紅旗規則。不過此次的延展施行公告並不會影響相關案件的進行及上訴流程,也不會影響其他聯邦部門對於金融機構及授信單位的監督。
日本內閣閣議決定朝向實現數位社會之重點計畫日本內閣於2021年6月18日閣議決定《朝向實現數位社會之重點計畫》(デジタル社会の実現に向けた重点計画)。本計畫係為使2021年9月數位廳正式設立後,得迅速依《數位社會形成基本法》(デジタル社会形成基本法)第37條第1項制定重點計畫,而將目前施政上須納入考量之項目事先制定為重點計畫。 本計畫重點措施摘要如下: 整備並普及化數位社會所需之共同功能,包含普及My Number Card、推動利用My Number,與Gov-Cloud政府雲端服務平台等。 徹底改善行政服務之使用者體驗與使用者介面,實現以國民為對象之服務。 推動《綜合資料戰略》(包括的データ戦略),促進資料流通與活用。 培養優秀數位人才,並延攬民間人才至行政機關。 為活用新技術進行籌措,並推動制度改革。 確保網路可及性(アクセシビリティ),減少數位落差。 確保網路安全與個人資料保護,防範使用資通訊技術之犯罪行為。 推動普及高度資通訊環境,與高效能運算之研究開發及測試實驗。 定期召開數位社會推動會議幹事會(デジタル社会推進会議幹事会(仮称),此為暫定),檢驗政策實施狀況。
因應FTC與NLRB對競業禁止的態度轉變,提供企業機密管理建議本文整理截至2025年3月底,美國聯邦貿易委員會(Federal Trade Commission,下稱FTC)與全國勞工關係委員會(National Labor Relations Board,下稱NLRB)對於競業禁止的態度轉變,並整理因應政策趨勢之產業機密管理建議,提供企業參考。 一、FTC與NLRB對競業禁止的態度 1. FTC對競業禁止的態度:由「訂定規定以統一禁止競業禁止」轉為「針對不合理的競業禁止進行個案調查」 (1)由Lina Khan(前FTC主席)主導的FTC,於2024年4月通過「禁止企業簽訂競業禁止契約」最終版本的規定(以下稱「最終規定」)。最終規定要求大部分情況下,禁止企業與員工簽訂競業禁止契約。 其後,美國有3案挑戰FTC最終規定: 在ATS Tree Services, LLC v. FTC案,賓州法院於2024年7月同意FTC有權禁止其認為屬於不公平競爭的行為(競業禁止);而在另外兩案結果則相反,在Properties of the Villages, Inc. v. FTC案,佛州法院於2024年8月認定訴訟原告(房地產開發商)不受FTC最終規定的影響;而Ryan LLC v. FTC案,2024年7月德州法院更以FTC之立法範圍逾越其職權為由,於全國範圍認定撤銷最終規定。FTC不服兩案最終規定的結果並上訴。 關於最終規定的最新進展為,由Andrew Ferguson(現任FTC主席)主導的FTC,於2025年3月6日分別向第5、第11巡迴上訴法院提出動議,主張「擱置上訴審理120天(appeal in abeyance for 120 days)」。動議均已獲法院批准。 (2)此外,FTC現任主席於2025年2月26日宣布成立「聯合勞動力工作小組(Joint Labor Task Force)」,並發布備忘錄說明FTC將繼續關注反競爭行為,例如:公司與員工間的競業禁止契約、公司間互不招攬(人才)契約等。 即,可見FTC態度由「原則上禁止簽訂競業禁止契約」,轉為「依個案起訴其認為不合理的競業禁止契約」。 2. NLRB對競業禁止的態度:由「針對要求員工簽訂競業禁止的個案進行調查」轉為「將競業禁止行為排除調查範圍」 (1)NLRB為獨立的聯邦政府機構,由主任檢查官負責調查、起訴勞資案件。NLRB前主任檢查官Jennifer Abruzzo於2024年10月7日發布不具拘束力的GC 25-01備忘錄,其依循自己在2023年5月所發布的GC 23–08備忘錄中強調「過於寬泛的競業禁止契約,限制員工流動性,違反《國家勞工關係法》」,本次備忘錄進一步指出某些類型的『留任或付款(stay-or-pay)條款』侵害員工依NLRA所享有的權利」。並說明Jennifer Abruzzo欲自2024年12月6日起,調查該些「要求員工簽訂競業禁止、『留任或付款』條款的雇主」。 (2)現任的NLRB代理主任檢察官William B. Cowen於2025年2月14日發布GC 25-05備忘錄,該備忘錄以「NLRB積壓的案件量過多、需要全面審查過往備忘錄以符合當前需求」為由,針對過往NLRB發布的備忘錄,採取撤銷、撤銷後有待進一步提供指導等作法,其中包含「撤銷前述的GC 23–08、GC 25-01備忘錄」。 二、因應政策趨勢之產業機密管理建議 綜上,可得出競業禁止契約仍為FTC納管的範圍,本文彙整產業的建議,提供企業應及早採取的機密管理作法: 1. 針對政策面 應制定政策定義營業秘密,以鑑別營業秘密的範圍。 2. 針對人員面 (1)盤點企業內部既有的競業禁止契約,以確保契約條款中競業禁止的期限、地理範圍及業務範圍的限制不會過於廣泛,以致於無法執行;與員工簽訂其他類型契約,例如:保密契約、花園假條款、禁止僱傭關係終止後招攬(員工/客戶)的契約等。 (2)宣導企業的機密管理政策。 (3)提醒離職員工對企業的保密義務。 資策會科法所創意智財中心於2023年發布之「營業秘密保護管理規範」已涵蓋前述管理作法,我國企業如欲落實系統化的營業秘密管理作法,可以參考此規範。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)