資訊揭露與市場競爭評估–
研析英國水平協議指引中之資訊交換
資訊工業策進會科技法律研究所
2023年09月23日
英國競爭與市場管理局(Competition and Markets Authority,CMA)於2023年8月16日發布《1988年競爭法第一章禁令適用於水平協議之指引》(Guidance on the application of the Chapter I prohibition in the Competition Act 1998 to horizontal agreements,以下簡稱CMA水平協議指引),以規範實際或潛在競爭者間之協議[1]。CMA水平協議指引提供事業擬定協議內容的參考,事業間於業務合作的同時,亦能符合法遵之要求,以維護市場公平競爭。
壹、事件摘要
英國CMA水平協議指引解釋競爭法之適用,尤其是《1998年競爭法》(Competition Act 1998,CA98)第1章禁止水平協議。2023年1月1日,《1998年競爭法(專業協議集體豁免)2022年指令》(SABEO)與《1998年競爭法(研發協議集體豁免)2022年指令》(R&D BEO)生效,於2023年8月16日發布之CMA水平協議指引,協助事業評估特定類型的水平協議是否受益於SABEO和R&D BEO,和遵守競爭法之相關規範[2]。申言之,CMA水平協議指引協助事業評估其所簽訂之協議內容,是否屬於法規範豁免之類型,且合乎競爭法之規定。
CMA水平協議指引說明研發協議[3]、生產協議[4]、採購協議[5]、商業化協議[6]和標準化協議[7]之適用與範例。鑒於大數據分析與機器學習需使用大量的資料;而大數據分析的結果,或機器學習的應用,將影響決策的形成,資訊交換因而更顯重要[8],CMA水平協議指引亦引導事業為合理的資訊交換。
資訊交換不僅為競爭市場的共同特徵,在一般的情形亦有利於消費者;例如資訊交換有助於解決資訊不對等而提升市場效率,事業能藉由比較最佳實踐方案,以提高內部效率;能減少庫存以節省成本,並處理不穩定的需求;或藉由演算法以開發新的產品或服務;[9]或減少搜尋成本,以提供消費者利益[10]。依據實際情況,資訊交換可以是有利於競爭,競爭中立或限制競爭[11]。換言之,競爭市場中適當的資訊交換,有助於事業降低成本,提升效率。
貳、重點說明
CMA水平協議指引第8章為資訊交換(Information Exchange),目的即在指導事業為資訊交換的競爭評估[12]。資訊交換是否會引發限制競爭之效應,取決於市場的特性,包含[13]:
(1)市場透明度:越透明的市場,競爭之不確定性越小[14]。
(2)市場集中度:若市場中僅有少數事業,則易於達成共識,與控制市場偏差。若市場高度集中,則訊息的交換,將有助於事業了解競爭者的市場地位和策略,而扭曲競爭,甚而增加共謀(collusion)的風險;若市場分散,則競爭者間資訊的傳播與交換,對市場而言,可能為競爭中立或有利於競爭[15]。
(3)參進障礙:此使外部競爭者無法破壞市場中的共謀結果(collusive outcome)[16]。
(4)市場穩定度:在供需穩定的市場,亦可能有共謀的結果;而需求的波動、市場中事業內部的大幅成長、新事業的參進、顛覆性創新(disruptive innovation),均可能顯示市場的穩定度不足,需提升交流,以促進競爭[17]。
競爭對手間的資訊交換,依據共享資訊的內容、目的、法律與經濟背景,可能為侵權而應受限制。包含與競爭對手交換事業目前或未來的訂價方向、生產能力、商業策略、針對需求的規劃,對未來銷售的預測,和在特定市場上的財務狀況與經營策略[18],提供價格資料而能預測事業未來的行為,和與競爭對手交換潛在參進者所提出之計畫要點[19]。申言之,事業應避免資訊所生之侵權行為;並需考量市場的特性,以評估資訊交換對競爭之限制。
參、事件評析
CMA水平協議指引第8章,提供事業間交換資訊的相關建議。為提升資訊交換對市場的效益,以資訊內容而言,事業須考量資訊交換的目的,以及藉由收集資訊、確認資訊交換的參與者係使用其具有所有權的原始資料、使用歷史資訊、僅交換與達到目標相符且必要的資訊,而能減少具有商業敏感性質的內容[20]。換言之,事業須避免機敏資料的流通,並具有使用資料的權限。
以資訊應用的角度,事業應採取措施,以控制資訊的交換與使用,包含減少頻繁的交換,以特定團隊(clean team)或信託方式進行資訊交換,或使用資料池(data pool)以確認近用資料之所有權[21]。亦即事業須確認資料的來源,與交換資料的相對人,並能管理資料流通的過程。
綜上所論,足夠的資料量,使大數據分析的結果能充分反映市場的實際需求,事業的決策和布局亦更為準確,適當的資訊交換有助於提升事業的市場競爭力。CMA水平協議指引協助事業評估資訊交換對競爭之影響,事業之資訊管理,除內部資訊之維護外,亦包含外部資訊之交換,如資訊交換之必要性,與資訊近用之權限、方式等,或可提供臺灣事業參考。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
[1]Guidance on Horizontal Agreements, GOV. UK, Competition and Markets Authority, https://www.gov.uk/government/publications/guidance-on-horizontal-agreements (last visited Aug. 23, 2023).
[2]CMA COMPETITION & MARKETS AUTHORITY, Guidance on the application of the Chapter I prohibition in the Competition Act 1998 to horizontal agreements, CMA184 (Aug. 2023), 6, at 6, https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1178791/Horizontal_Guidance_FINAL.pdf (last visited Sept. 01, 2023).
[3] Id., at 35 below.
[4] Id., at 83 below.
[5] Id., at 124 below.
[6] Id., at 145 below.
[7] Id., at 203 below.
[8] Id., at 165.
[9] Id.
[10] Id., at 166.
[11] CMA Competition & Markets Authority, supra note 8.
[12] Id.
[13] Id., at 188.
[14] Id.
[15] Id., at 188-189.
[16] Id., at 189.
[17] Id.
[18] Id., at 190.
[19] Id., at 191.
[20] Id., at 201.
[21] Id.
歐洲聯盟法院(CJEU)佐審官 (Advocate General ) Paolo Mengozzi 於今年(2016) 9月8日提出一份不具拘束力之「航空乘客個人資料共享協議(草案)」( European Union on the transfer and processing of passenger name record data (“PNR Agreement”)) 法律意見,認為協議應遵守歐盟憲章有關人權之基本原則。此份法律意見為歐洲聯盟法院首次就國際協議草案,檢視與歐盟憲章有關規範之一致性。 [背景] PNR協議草案於2010年5月開始協商,2014年6月25日簽署。主要以反恐為目的讓歐盟與加拿大交換航空乘客資訊(包括旅客姓名、旅行日期、行程記錄、機票、聯繫資訊、旅行社等其他有關資訊)。除加拿大之外,歐盟亦與美國、澳洲簽有類似資料共享協議。關注到PNR協議有關隱私、人權之議題,歐盟議會將PNR協議提至歐洲聯盟法院審議。 [法律意見] 佐審官認為,協議同意在特定條件下就限定目標之乘客蒐集其敏感資訊,未違反歐盟憲章;然PNR協議草案仍有部分內容違反歐盟憲章:即草案允許歐盟、加拿大主管機關使用乘客姓名等數據,已逾越預防恐怖組織犯罪和跨國犯罪的必要範圍。 因歐洲聯盟法院去年已廢除歐盟與美國之間之安全港(Safe Harbor)法案,隨後雖起草隱私保護協議(Privacy Shield),但仍有意見質疑隱私保護之完整性。PNR協議草案法律意見之提出,可窺歐盟關於隱私保護之立場。
美國加州機動車輛管理局3月10日發布無人駕駛車輛管理方案無人駕駛汽車、電腦駕駛汽車或輪式移動機器人,皆屬自動化載具的一種,具有傳統汽車的運輸能力。而作為自動化載具,自動駕駛汽車不需要人為操作即能感測其環境及導航。目前無人車仍未全面商用化,大多數均為原型機及展示系統,部份可靠技術才下放至商用車型,但有關於自駕車逐漸成為現實,已經引起了很多有關於道德與法律上的討論。 無人駕駛車輛若能夠變得商用化,將可能對整體社會造成破壞性創新的重大影響。然而,在商品化之前的實際道路測試是自動駕駛車輛開發過程非常重要的一環,是否允許自動駕駛車輛實際上路測試為各地交通主管機關之職責。因此,為了保障公共安全與推廣創新,為美國加州機動車輛管理局(Department of Motor vehicles ,下稱加州DMV)便自2015年12月公布無人駕駛車輛規範草案後,歷經2016年9月的修正,於2017年3月10日正式公布無人駕駛車輛管理規範。 美國加州申請自動駕駛車輛上路測試規定係依據加州汽車法規 (California Vehicle Code)38750 中之條款 3.7所訂定,依照加州DMV規畫,在社區內和高速公路上進行測試的自動駕駛車,仍需與傳統汽車一樣,具有方向盤與煞車踏板,而且駕駛座上亦需有人隨時待命應付緊急情況發生。此外,無人駕駛車輛尚必須有人進行遠距監控,並且能在緊急情況發生時安全停靠路邊。 截至2017年3月8日,已有27家公司獲得加州DMV許可,在道路上測試無人駕駛車輛,且這些車輛迄今只造成少數事故。加州DMV公布無人駕駛車輛管理規範後,還將於2017年4月24日舉行公聽會持續蒐集意見,研擬規範修改內容,以符合實際需求。 人駕駛車輛是汽車產業未來發展的趨勢之一,我國於不久的將來亦可能面臨有無人駕駛車輛在國內進行實際道路測試的需求。然而,我國地狹人稠,交通狀況複雜,且國人守法觀念尚有加強空間,確也增添無人駕駛車輛在國內道路測試的挑戰性,以及主管機關於受理測試申請之困難度。因此,加州DMV所公布之無人駕駛車輛管理規範之後續發展,值得吾人持續關注。
美國FDA將整合區塊鏈等新興技術於電子協同運作系統之開發,以提升藥物供應鏈的安全性依據2013年11月27日通過之藥物供應鏈安全法(Drug Supply Chain Security Act, DSCSA),美國食品與藥物管理局(US Food and Drug Administration, FDA)於2019年2月7日公布新的領航計畫(Pilot Program)。此計畫主要的目標在於發展電子協同運作系統(electronic, interoperable system)以降低不合規範的藥物於市場流通的可能性,並提升患者的用藥安全。 此運作系統預計於2023年開始正式實施,其主要的功能包含辨識(identify)或追蹤處方藥物(prescription drugs)於供應鏈中的流通狀態,以及排除非法藥物進入供應鏈。於後者的情形,此運作系統將同時協助相關主管機關在非法藥物於市場中流通時迅速反應。FDA進一步指出,為達到這些目的,將引入區塊鏈(blockchain)等已使用在全球食品供應鏈(global food supply chains)的管理技術,以促進系統運作過程中的可追蹤性(traceability)及準確性。 此計畫於2019年2月8日到3月11日間接受加入申請,FDA鼓勵供應鏈中的相關人員,包含製造商(manufacturers)、再包裝商(repackagers)及其他利害關係人(other stakeholders)加入並試行計畫中開發的運作系統等技術,以加強產品使用狀況的管理。此外,FDA未來將持續公布相關的指引草案,如藥物辨識指標(product identifiers)等,以提升產業利用性及藥物使用的安全性。
英國與美國為人工智慧安全共同開發簽署合作備忘錄英國技術大臣(U.K. Secretary of State for Science)蜜雪兒·多尼蘭(Michelle Donelan)和美國商務部長(U.S. Secretary of Commerce)吉娜·雷蒙多(Gina Raimondo)於2024年4月1日在華盛頓特區簽署一份合作備忘錄(MOU),雙方將共同開發先進人工智慧(frontier AI)模型及測試,成為首批就測試和評估人工智慧模型風險等進行正式合作之國家。 此備忘錄之簽署,是為履行2023年11月在英國的布萊切利公園(Bletchley Park)所舉行的首屆人工智慧安全峰會(AI Safety Summit)上之承諾,諸如先進AI的急速進步及濫用風險、開發者應負責任地測試和評估應採取之適當措施、重視國際合作和資訊共享之必要性等等,以此為基礎羅列出兩國政府將如何在人工智慧安全方面匯集技術知識、資訊和人才,並開展以下幾項聯合活動: 1.制定模型評估的共用框架(model evaluations),包括基礎方法(underpinning methodologies)、基礎設施(infrastructures)和流程(processes)。 2.對可公開近用模型執行至少一次聯合測試演習(joint testing exercise)。 3.在人工智慧安全技術研究方面進行合作,以推進先進人工智慧模型之國際科學知識,並促進人工智慧安全和技術政策的一致性。 4.讓英、美兩國安全研究所(AI Safety Institute)間的人員互相交流利用其團體知識。 5.在其活動範圍內,依據國家法律、法規和契約規定來相互共享資訊。 換言之,兩國的機構將共同制定人工智慧安全測試之國際標準,以及適用於先進人工智慧模型設計、開發、部署、使用之其他標準。確立一套通用人工智慧安全測試方法,並向其他合作夥伴分享該能力,以確保能夠有效應對這些風險。就如英國技術大臣蜜雪兒·多尼蘭強調的,確保人工智慧的安全發展是全球性問題,只有通過共同努力,我們才能面對技術所帶來的風險,並利用這項技術幫助人類過上更好的生活。