簡介美國《營業秘密案件管理的司法指引》

2023年7月13日,美國聯邦司法中心(Federal Judicial Center)發布《營業秘密案件管理的司法指引》(Trade Secret Case Management Judicial Guide)。該指引是由美國聯邦司法中心與Berkeley大學合作出版,旨在提供處理聯邦營業秘密訴訟的法官參考,並為訴訟當事人提供營業秘密案件各階段的注意事項。其中特別指出識別營業秘密及證據開示在訴訟中的重要性。

1.在識別營業秘密的部分
《營業秘密案件管理的司法指引》指出在訴訟中,識別應達到「足以與已公開的資訊進行比較」的程度。而識別程度應具備以下兩個要件,包括:
(1)使被告了解原告所主張之營業秘密範圍;
(2)使被告能確定證據開示項目與本案所涉及之營業秘密間的關聯性。
據此,若原告僅識別其所主張之營業秘密的類別不足以識別其營業秘密。為達到《營業秘密案件管理的司法指南》所要求之識別程度,企業應盤點其擁有的營業秘密並留存產出紀錄,以利後續訴訟中能具體識別其營業秘密。

2.在證據開示的部分
《營業秘密案件管理的司法指引》指出證據開示的範圍會受到不同因素影響,比如各類型的特殊紀錄、個人隱私權是否受到保護等。為了能在證據開示階段取得優勢,企業應與員工簽署協議,明確約定其於機密資訊有外洩之虞時,有權對員工之個人設備等進行調查。

由上述內容可以發現,若要在美國營業秘密案件中取得優勢,建議企業採取識別所擁有的營業秘密、保存產出紀錄、與員工簽署相關協議等措施。關於前述營業秘密管理措施之重要內容,企業可以參考資策會科法所創意智財中心發布的「營業秘密保護管理規範」,並進一步了解該如何管理,以降低自身營業秘密外洩之風險,並提升其競爭優勢。

本文同步刊登於TIPS網站(https://www.tips.org.tw

相關連結
你可能會想參加
※ 簡介美國《營業秘密案件管理的司法指引》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9058&no=16&tp=1 (最後瀏覽日:2025/05/23)
引註此篇文章
你可能還會想看
日本發布2020年統合創新戰略,聚焦疫後科研與創新政策

  日本內閣府在2020年7月17日發布「2020年統合創新戰略(統合イノベーション戦略2020,下稱創新戰略2020)」政策文件。創新戰略為內閣府轄下綜合科學技術與創新會議(総合科学技術・イノベーション会議)依據日本科學技術基本計畫,自2018年起固定於每年度發布。其目的係自全球性的觀點出發,提出含括科研創新之基礎研究至應用端的整體性策略。本年度創新戰略著眼於COVID-19疫情流行與世界各地大規模災害頻仍下,日本科研與創新政策所面臨的課題以及應採取的對策,並擴大科研領域,納入人文社會科學。   創新戰略2020指出,因COVID-19疫情影響,醫療體系、社經生活與研發活動皆受到程度不等的衝擊,包含零接觸經濟興起、社交方式改變與實體研究室關閉等。與此同時,美中科技對抗、GAFA數位壟斷爭議、極端氣候與天然災害等國內外情勢變遷快速。在此背景下,日本的首要課題為建構不間斷且強韌的醫療、教育、公共事業等社會服務體系,維繫國內外社會的鏈結。為此,應透過加速數位化,促成創新活動,同時強化研發能量,實現以人為本的「Society5.0」之社會。 基此,創新戰略2020提出了以下四項具體對策: (1)建立足以應對疫情困境、具韌性的社會經濟體系:在公衛醫療體系,進行疫苗與醫療儀器之研發,並運用數位科技傳遞訊息;因應科研創新與產學合作受疫情影響停擺,給予及時資助,如培育年輕創業者、提供推動引導研發補助(開発研究促進助成金,通稱Gap Fund)等;推動教育、研究、物流等各領域的數位化,同時自經濟安全保障的觀點,強化供應鏈韌性。 (2)創新創造:透過官民合作,實踐智慧城市的構想;同時持續推動「STI for SDGs路線圖(STI for SDGsロードマップ)」政策;藉由實踐研究誠信(研究インテグリティ),加強與國際網路合作;另一方面,應發展post 5G與Beyond 5G等前瞻數位基礎技術,並持續建置各領域的資料流通基礎設施。 (3)強化科研與創新之研究能量:建立能充分吸引年輕人才挑戰、進行創新研發的研究環境,同時成立基金以建構世界級的研究基礎設施;以充分活用大學研發成果為目標,檢討智財制度發展的願景;結合人文社會科學領域研究,並活用射月型研發(ムーンショット型研究開発)制度,發展社會問題解決方案。 (4)重要科技發展項目:於基礎技術層次,包含AI、生化科技、量子技術、材料等,對此應優先投入研發、培育相關人才;於應用科學層次,則包含防災、防疫、資安、能源、健康醫療、航太、糧食、農漁產業等。

美國聯邦法官指出藥用基改作物之種植應予嚴格管理

  美國聯邦法院最近判決美國聯邦官員在 2001 年及 2003 年,允許四家企業在夏威夷種植基改作物以生產試驗用藥的行為,違反環境法規。該許可內容涉及許可在夏威夷州 Kauai, Maui, Molokai and Oahu 種植玉米或甘蔗。   本案法官 Michael Seabright 判決中特別指出,鑑於夏威夷州乃是許多瀕臨絕種或受到絕種威脅的生物的棲地-該州計有 329 種罕見生物,占全美瀕臨絕種生物及受到絕種威脅生物種類之四分之一,而美國農業部動植物健康檢疫服務( Department of Agriculture's Animal and Plant Health Inspection Service )在許可種植基改作物前,竟未先進行初步的環境檢視( preliminary environmental reviews ),很明顯地已違反該機關依據瀕臨絕種生物法( Endangered Species Act )及國家環境政策法( National Environmental Policy Act )所應盡之義務。   本案原告 EarthJustice 認為,本案是第一件聯法院就 biofarming 所做之判決。所謂 biopharming 係指研究人員利用基改技術將植物用來作為生產藥品、抗體、疫苗等生技藥物的生物反應器( bioreactors )。由於植物可以大量栽種,因而若 biopharming 技術可行,將可有效解決生技藥物供給短缺的問題,嘉惠更多的病患,因而, biopharming 被視為未來可能顛覆傳統的藥物生產的一種生技藥物製造方式。目前, biopharming 廣泛使用的植物包括玉米、煙草等。   biopharming 的構想可以較低的成本解決部分生技藥物生產的問題,但其構想看似極具吸引力,不過發展 biopharming 並非毫無挑戰,尤其是如何就藥用基改植物予以隔離管理,避免基因污染。反對者一般主張,藥用基改植物 並未通過食用安全性測試,並不適合人體食用或是當作家畜飼料, 如果栽種藥用基改植物的隔離管理未做好把關,難保這些本應受到嚴格管制的治療性植物進入到食物供應鏈,影響民眾的身體安全。   在民眾健康及環境生態安全的考量下,反對推展 Biopharming 的力量也越來越大,本案即是一個明顯的例子。

紐西蘭內政部發布新版VASP指引,因應虛擬資產轉帳納入監管

紐西蘭內政部於2024年7月25日發布新版洗錢防制與打擊資助恐怖主義(Anti-Money Laundering and Countering Financing of Terrorism, 以下均簡稱AML/ CFT)指引(下稱指引),指導虛擬資產服務提供者(virtual asset service providers, 下稱VASPs)遵循虛擬資產交易行為準則與注意事項。該國有關AML/ CFT之規定係以多項規則與行為指引構成,且應技術、產業與國際標準之變革持續調整既有框架。本次指引更新係為配合AML/ CFT法(AML/ CFT Act 2009)及其規則之修正與生效,重新規範VASPs對於虛擬資產轉帳再定義後義務。以下針對法規變革脈絡簡要說明: AML/ CFT規則(AML/ CFT (Definitions) Regulations 2011)將虛擬資產定義為具有價值的數位貨幣,可用於交易、達成支付或投資目的;雖其不等同於債券、股票與衍生性金融產品或數位法定貨幣,VASPs仍為AML/ CFT法定義之報告實體,負有對客戶進行盡職調查、報告特定業務活動與交易的義務。 自2024年6月起,AML/ CFT規則全面納管虛擬資產轉帳,範圍由法定貨幣與虛擬資產間的流動,擴及虛擬資產間的交易,包含以VASPs作為中介機構之交易情形。此外,基於虛擬資產跨境的特性,所有轉帳皆被推定為國際轉帳,除非VASPs確定該筆交易發生紐西蘭境內。AML/ CFT規則對虛擬資產平臺交易之監管密度係以1,000紐幣為閾值,VASPs須對超過此金額的國際轉帳,向金融情報中心(Financial Intelligence Unit, FIU)提送交易報告;而對於臨時性交易則應盡職調查客戶。 為降低虛擬資產被用於非法活動之風險,防制洗錢金融行動工作組織(FATF)倡議於國際施行一致之監管標準,避免因各國法規監管差異造成防堵漏洞。紐西蘭政府藉改造現行金融法規將相關產業逐步納入監管,並提供指引說明及闡釋法規內容,調適金融科技發展與現有制度規範落差。此次AML/ CFT規則與VASPs指引之修正,將有助於紐西蘭更符合國際組織建議之洗錢防制與反資助恐怖活動監管標準。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP