日本經濟產業省(下稱經產省)於2023年6月6日發布中小企業開發IoT機器之產品資安對策指引(IoT機器を開発する中小企業向け製品セキュリティ対策ガイド),本指引彙整企業應該優先推動IoT機器資安對策,經產省提出具體資安對策如下:
1.制定產品資安政策(セキュリティポリシー)並廣為宣導:由企業經營者率先制定資安政策,進行教育宣導,並依實際需求修正調整。
2.建立適當的資安政策體制:確立實施資安政策必要之人員及組織,明確其職務及責任。
3.指定IoT機器應遵守之資安事項,並預測風險:決定IoT機器的預設使用者及使用案例,並於釐清使用者需求後,指定IoT機器應遵守之資安事項,預測衍生風險。
4.考量IoT機器應遵守之資安事項及預測風險,進行設計與開發:以預設IoT機器應遵守之資安事項衍生風險為基礎,從設計與開發階段開始採取風險對策。
5.檢測是否符合資安相關要件:從設計與開發階段開始制定檢測計畫,檢測是否符合資安要件,並依據檢測結果進行改善。
6.於產品出貨後蒐集風險資訊,與相關人員溝通並適時提供支援:蒐集全球資安事故與漏洞資訊,並設置可適時與委外廠商以及用戶溝通之窗口。
歐盟執委會發布《受禁止人工智慧行為指引》 資訊工業策進會科技法律研究所 2025年02月24日 歐盟繼《人工智慧法》[1](Artificial Intelligence Act, 下稱AI Act)於2024年8月1日正式生效後,針對該法中訂於2025年2月2日始實施之第5條1,有關「不可接受風險」之內容中明文禁止的人工智慧行為類型,由歐盟執委會於2025年2月4日發布《受禁止人工智慧行為指引》[2]。 壹、事件摘要 歐盟AI Act於2024年8月1日正式生效,為歐盟人工智慧系統引入統一之人工智慧風險分級規範,主要分為四個等級[3]: 1. 不可接受風險(Unacceptable risk) 2. 高風險(High risk) 3. 有限風險,具有特定透明度義務(Limited risk) 4. 最低風險或無風險(Minimal to no risk) AI Act之風險分級系統推出後,各界對於法規中所說的不同風險等級的系統,究竟於實務上如何判斷?該等系統實際上具備何種特徵?許多內容仍屬概要而不確定,不利於政府、企業遵循,亦不利於各界對人工智慧技術進行監督。是以歐盟本次針對「不可接受風險」之人工智慧系統,推出相關指引,目的在明確化規範內涵規範,協助主管機關與市場參與者予以遵循。 貳、重點說明 一、AI Act本文第5條1(a)、(b)-有害操縱、欺騙與剝削行為 (一)概念說明 本禁止行為規定旨在防止透過人工智慧系統施行操縱與剝削,使他人淪為實現特定目的工具之行為,以保護社會上最為脆弱且易受有害操控與剝削影響的群體。 (二)禁止施行本行為之前提要件 1.該行為必須構成將特定人工智慧系統「投放於歐盟市場」(placing on the market)[4]、「啟用」(putting into service)[5]或「使用」(use)[6]。 2.應用目的:該人工智慧系統所採用的技術具有能實質扭曲個人或團體行為的「目的」或「效果」,此種扭曲明顯削弱個人或團體做出正確決定的能力,導致其做出的決定偏離正常情形。 3.技術特性:關於(a)有害的操縱與欺騙部分,係指使用潛意識(超出個人意識範圍)、或刻意操控或欺騙的技術;關於(b)有害地利用弱勢群體部分,是指利用個人年齡、身心障礙或社會經濟狀況上弱點。 4.後果:該扭曲行為已造成或合理可預見將造成該個人、另一人或某群體的重大傷害。 5.因果關係:該人工智慧系統所採用的技術、個人或團體行為的扭曲,以及由此行為造成或可合理預見將造成的重大傷害之間,具備相當因果關係。 二、AI Act本文第5條1(c)-社會評分行為 (一)概念說明 本禁止行為規定旨在防止透過人工智慧系統進行「社會評分」可能對特定個人或團體產生歧視和不公平的結果,以及引發與歐盟價值觀不相容的社會控制與監視行為。 (二)禁止施行本行為之前提要件 1.該行為必須屬於將特定人工智慧系統「投放於歐盟市場」、「啟用」或「使用」。 2.應用目的:該人工智慧系統必須用於對一定期間內,自然人及群體的社會行為,或其已知、預測的個人特徵或人格特質進行評價或分類。 3.後果:透過該人工智慧系統所產生的社會評分,必須可能導致個人或群體,在與評分用資料生成或蒐集時無關的環境遭受不利待遇,或遭受與其行為嚴重性不合比例的不利待遇。 三、AI Act本文第5條1(d)-個人犯罪風險評估與預測行為 (一)概念說明 本禁止行為規定之目的,旨在考量自然人應依其實際行為接受評判,而非由人工智慧系統僅基於對自然人的剖析、人格特質或個人特徵等,即逕予評估或預測個人犯罪風險。 (二)禁止施行本行為之前提要件 1.該行為必須屬於將特定人工智慧系統「投放於歐盟市場」、「啟用」或「使用」。 2.應用目的:該人工智慧系統必須生成旨在評估或預測自然人施行犯罪行為風險的風險評估結果。 3.後果:前述風險評估結果僅依據於對自然人的剖析,或對其人格特質與個人特徵的評估。 4.除外規定:若人工智慧系統係基於與犯罪活動直接相關的客觀、可驗證事實,針對個人涉入犯罪活動之程度進行評估,則不適用本項禁止規定。 四、AI Act本文第5條1(e)-無差別地擷取(Untargeted Scraping)臉部影像之行為 (一)概念說明 本禁止行為規定之目的,旨在考量以人工智慧系統從網路或監視器影像中無差別地擷取臉部影像,用以建立或擴充人臉辨識資料庫,將嚴重干涉個人的隱私權與資料保護權,並剝奪其維持匿名的權利。 (二)禁止施行本行為之前提要件 1.該行為必須屬於將特定人工智慧系統「投放於歐盟市場」、「啟用」或「使用」。 2.應用目的:該行為以建立或擴充人臉辨識資料庫為目的。 3.技術特性:填充人臉辨識資料庫的方式係以人工智慧工具進行「無差別的擷取行為」。 4.因果關係:建立或擴充人臉辨識資料庫之影像來源,須為網路或監視器畫面。 五、AI Act本文第5條1(f)-情緒辨識行為 (一)概念說明 本禁止行為規定之目的,旨在考量情緒辨識可廣泛應用於分析消費者行為,以更有效率的手段執行媒體推廣、個人化推薦、監測群體情緒或注意力,以及測謊等目的。然而情緒表達在不同文化、情境與個人反應皆可能存在差異,缺乏明確性、較不可靠且難以普遍適用,因此應用情緒辨識可能導致歧視性結果,並侵害相關個人或群體的權利,尤以關係較不對等的職場與教育訓練環境應加以注意。 (二)禁止施行本行為之前提要件 1.該行為必須屬於將特定人工智慧系統「投放於歐盟市場」、「啟用」或「使用」。 2.應用目的:該系統係用於推斷情緒。 3.因果關係:該行為發生於職場或教育訓練機構。 4.除外規定:為醫療或安全目的而採用的人工智慧系統不在禁止範圍內。例如在醫療領域中,情緒辨識可協助偵測憂鬱症、預防自殺等,具有正面效果。 六、AI Act本文第5條1(g)-為推測敏感特徵所進行之生物辨識分類行為 (一)概念說明 本禁止行為規定之目的,旨在考量利用人工智慧之生物辨識分類系統(Biometric Categorisation System)[7],可依據自然人的生物辨識資料用以推斷其性取向、政治傾向、信仰或種族等「敏感特徵」在內的各類資訊,並可能在當事人不知情的情況下依據此資訊對自然人進行分類,進而可能導致不公平或歧視性待遇。 (二)禁止施行本行為之前提要件 1.該行為必須屬於將特定人工智慧系統「投放於歐盟市場」、「啟用」或「使用」。 2.應用目的:該行為係針對個人進行分類;而其辨識目的係為推斷其種族、政治傾向、工會成員身分、宗教或哲學信仰、性生活或性取向等。 3.技術特性:該系統必須為利用人工智慧,並依據自然人的生物辨識資料,將其歸類至特定類別之生物辨識分類系統。 4.因果關係:前述分類依據為其生物辨識資訊。 5.除外規定:本項禁止規定未涵蓋對合法取得的生物辨識資料進行標記(Labelling)或過濾(Filtering)行為,如用於執法目的等。 七、AI Act本文第5條1(h)-使用即時遠端生物辨識(Remote Biometric Identification, RBI)系統[8]執法[9]之行為 (一)概念說明 本禁止行為規定之目的,旨在考量在公共場所使用即時RBI系統進行執法,可能對人民權利與自由造成嚴重影響,使其遭受監視或間接阻礙其行使集會自由及其他基本權利。此外,RBI系統的不準確性,將可能導致針對年齡、族群、種族、性別或身心障礙等方面的偏見與歧視。 (二)禁止施行本行為之前提要件 1.該行為必須涉及對即時RBI系統的「使用」行為。 2.應用目的:使用目的須為執法需要。 3.技術特性:該系統必須為利用人工智慧,在無需自然人主動參與的情況下,透過遠距離比對個人生物辨識資料與參考資料庫中的生物辨識資料,從而達成識別自然人身份目的之RBI系統。 4.因果關係:其使用情境須具備即時性,且使用地點須為公共場所。 參、事件評析 人工智慧技術之發展固然帶來多樣化的運用方向,惟其所衍生的倫理議題仍應於全面使用前予以審慎考量。觀諸歐盟AI Act與《受禁止人工智慧行為指引》所羅列之各類行為,亦可觀察出立法者對人工智慧之便利性遭公、私部門用於「欺詐與利用」及「辨識與預測」,對《歐盟基本權利憲章》[10]中平等、自由等權利造成嚴重影響的擔憂。 為在促進創新與保護基本權利及歐盟價值觀間取得平衡,歐盟本次爰參考人工智慧系統提供者、使用者、民間組織、學術界、公部門、商業協會等多方利害關係人之意見,推出《受禁止人工智慧行為指引》,針對各項禁止行為提出「概念說明」與「成立條件」,期望協助提升歐盟AI Act主管機關等公部門執行相關規範時之法律明確性,並確保具體適用時的一致性。於歐盟內部開發、部署及使用人工智慧系統的私部門企業與組織,則亦可作為實務參考,有助確保其自身在遵守AI Act所規定的各項義務前提下順利開展其業務。 [1]European Union, REGULATION (EU) 2024/1689 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL (2024), https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L_202401689 (last visited Feb. 24, 2025). [2]Commission publishes the Guidelines on prohibited artificial intelligence (AI) practices, as defined by the AI Act., European Commission, https://digital-strategy.ec.europa.eu/en/library/commission-publishes-guidelines-prohibited-artificial-intelligence-ai-practices-defined-ai-act (last visited Feb. 24, 2025). [3]AI Act, European Commission, https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai (last visited Feb. 24, 2025). [4]依據本指引第2.3點,所謂「投放於歐盟市場」(placing on the market),係指該人工智慧系統首次在歐盟市場「提供」;所謂「提供」,則係指在商業活動過程中,以收費或免費方式將該AI系統供應至歐盟市場供分發或使用。 [5]依據本指引第2.3點,所謂「啟用」(putting into service),係指人工智慧系統供應者為供應使用者首次使用或自行使用,而於歐盟內供應人工智慧系統。 [6]依據本指引第2.3點,「使用」(use)之範疇雖未在AI Act內容明確定義,惟應廣義理解為涵蓋人工智慧系統在「投放於歐盟市場」或「啟用」後,其生命週期內的任何使用或部署;另參考AI Act第5條的規範目的,所謂「使用」應包含任何受禁止的誤用行為。 [7]依據AI Act第3條(40)之定義,生物辨識分類系統係指一種依據自然人的生物辨識資料,將其歸類至特定類別之人工智慧系統。 [8]依據AI Act第3條(41)之定義,RBI系統係指一種在無需自然人主動參與的情況下,透過遠距離比對個人生物辨識資料與參考資料庫中的生物辨識資料,從而達成識別自然人身份目的之人工智慧系統。 [9]依據AI Act第3條(46)之定義,「執法(law enforcement)」一詞,係指由執法機關或其委任之代表,代替其執行目的包括預防、調查、偵測或起訴刑事犯罪,或執行刑事處罰,並涵蓋防範與應對公共安全威脅等範疇之行為。 [10]CHARTER OF FUNDAMENTAL RIGHTS OF THE EUROPEAN UNION, Official Journal of the European Union, https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:12012P/TXT (last visited Feb. 24, 2025).
歐盟執委會發布2021歐洲創新計分板報告歐盟執委會(European Commission, EC)於2021年6月21日發布2021歐洲創新計分板報告(European Innovation Scoreboard 2021, EIS),其以「整體架構條件」(Framework conditions)、「投資」、「創新活動」和「影響力」(Impacts)四大評比指標,其下再細分為12個次標和32個子標,次標例如人力資源、企業創新、就業影響力等;子標則例如政府部門研發創新支出、企業專業職能訓練、專利與商標申請、高科技產品出口等。相較於2020年創新計分板報告的10個次標和27個子標,本次新增2個次標為列屬在「投資」下的資通訊運用(Use of information technologies),以及在「影響力」下的環境永續。資通訊使用廣度又可分為(1)企業是否提供教育訓練以提升員工的資通訊技能、(2)是否聘用資通訊專家。而環境永續下又可細分為(1)資源生產力(Resource productivity)、(2)產業排放PM2.5狀況、(3)環境相關技術發展狀況;以上即為今年新增的5項子標。 歐洲計分板依前述指標將歐盟會員國創新表現分為四組,2021年綜合創新能力分別為:(1)創新領導者(Innovation Leaders):包含瑞典、芬蘭、丹麥、比利時,為創新表現大於歐盟成員國平均創新度,且超過25%以上者;(2)優秀創新者(Strong Innovators):包含荷蘭、德國、盧森堡、奧地利、法國等,創新表現大於歐盟成員國平均但不超過25%者;(3)中等創新者(Moderate Innovators):包含義大利、馬爾他、西班牙、葡萄牙等國,其創新表現小於歐盟平均者;以及最後一組(4)新興創新者(Emerging Innovators):包含匈牙利、波蘭、羅馬尼亞等,為創新表現低於歐盟平均之70%。其中第四組新興創新者為新名稱,以取代2020年的適度創新者(Modest Innovators),且今年共有7個國家落入第四組,相比2020年的2個國家還要增加許多。 此外,在各特定領域上,該報告亦有對不同國家進行排名。例如在數位化領域,表現最好者為丹麥、芬蘭、荷蘭。在企業投資部分,以德國、瑞典和比利時為最佳。而在全球綜合創新表現上,歐盟綜整OECD和世界銀行的數據分析,南韓為創新表現最佳,其次才是加拿大、澳洲、美國、日本和歐盟。歐盟於2020年之創新排名領先美國,但在2020年到2021年之間,美國之中小企業產品與流程創新大幅增長至2020年的兩倍,故創新排名從第6進步到第4。
立法責令ISP業者留存紀錄之呼聲日益高漲立法強制 ISP 業者記錄客戶使用狀況以供日後調查之用,此等呼聲近來日形高漲。部分行政部門官員業已表態支持此一作為;另有數位國會議員亦主張,應儘速推動聯邦層級之立法,以協助執法部門對付兒童色情( child pornography )問題;甚至在科羅拉多州,目前已有相關法案進入該州參議會接受審理。 立法強制業者留存資料或記錄的作法,固然對於揭發犯罪繩之以法甚有裨益,但由於可能會讓警方得以取得電郵往來、網頁瀏覽、聊天記錄等向來可能經過幾個月之後就會刪除的資料,以致隱私保障人士以及 ISP 業者普遍對此甚感憂慮。歸納而言,其理由主為以下三點:第一,何人始有權限近用相關資料,探查他人上網行為之紀錄,仍待釐清;第二,存留該等資料所需空間勢必可觀,費用究竟由誰支應,亦屬未定;最後,現行法制是否對於警方辦案確實造成障礙,同樣有待探討。 美國司法部( the U.S. Department of Justice )去年即已逐步開始推動相關立法,而歐洲議會( the European Parliament )去年 12 月審議相關條文增修,要求 ISP 業者以及電信業者就其經手傳輸之所有電子訊息以及通話,均須保存相關紀錄 6 個月至 2 年之譜,更是引發諸多關注及討論。美國眾議院( the U.S. House of Representatives )能源商務委員會( the Committee on Energy and Commerce )監控調查組( the Subcommittee on Oversight and Investigations )預計本月 27 日將召開另一次聽證會,持續就此議題詳加探討。
何謂公共出借權(Public Lending Right;PLR )?隨著科技及網際網路的普及,扮演著知識保存及傳遞角色的圖書館,在近幾年來因應讀者的需求,逐漸朝向數位化邁進。提供數位化服務對於圖書館的使用者來說,可降低資料蒐集的時間成本。然而,對於著作創作人而言,圖書館若提供數位化服務,可能會造成整個著作市場的失序,著作權人無法由著作市場取得著作權法所賦予的相當報酬,同時因應數位時代來臨所衍生的電子資料庫業者的生存空間亦大幅被壓縮。目前已有28個國家立法承認著作人的租借權,對於圖書館出借館藏造成著作權人的損失,採取補償制度,即賦予著作權人「公共出借權」(Public Lending Right;PLR),對於著作權人因為圖書館出借館藏所可能的損失,予以一定額度的補償,而歐盟亦正醞釀推行統一的出借權制度。依據法源的不同,PLR在實施上會有不同的做法。目前已實行PLR的28國,其立法基礎大致可分為三類:(1) 根據著作權法中租借權的授權,如德國、澳洲;(2) 根據著作權法外的補償權,如英國;(3) 或是透過地方文化機構的補助。 所謂「公共出借權」或稱「公共借閱權」乃指圖書或其他媒體資料,透過圖書館出借給讀者,而衍生政府以補償金或酬金支給作家的一種權利,是一種權利補償金制度。這個制度經濟上的假設是圖書館的出借行為會對於著作在市場上的銷售產生不利的影響,從而減損了著作權人的收入。但因為圖書館出借圖書乃是整個著作權法促進文化發展下所必須的一環,因此,對於著作權人的特別犧牲加以補償。從文化政策的角度來看,是屬於國家對文化創造者所實施的保護與獎勵措施。而基於圖書館對社會大眾提供免費服務的信念,實施公共出借權的國家,皆以政府經費或另設基金的方式來運作,並未直接向圖書館使用者要求收費,也並非以圖書館經費來支應給予作者的報酬。