日本經濟產業省(METI)於2022年12月22日於官網公布「特定數位平臺之透明性及公正性評鑑」報告(特定デジタルプラットフォームの透明性及び公正性についての評価),首次針對擁有數位平臺的大型IT(Information Technology)企業完成交易機制透明性及公正性評鑑,並要求被評鑑之企業進行改善。
該評鑑依據「特定數位平臺之透明性及公正性提升法」 (特定デジタルプラットフォームの透明性及び公正性の向上に関する法律,以下稱「透明化法」),透明化法於2020年5月通過並已在2021年2月施行。其目的是為了提高交易之透明性以及公正性,具體指定「特定數位平臺」之企業,並列為評鑑對象,課予其有揭露或公開特定訊息,與進行改善的義務。
本次的評鑑內容,是依該法第4條第1項、第8條以及第9條第2項所定,交易條件之資訊揭露義務為基礎,由日本經濟產業大臣指定數位平臺企業(提供者の指定),進行個案評鑑(評価)並要求其改善(勧告)。依據個案評鑑之內容,日本針對數位平臺之透明度及公正性之判斷,歸納出下列具有共通性之指標:
1.企業有揭露交易條件之義務
2.企業有完善交易機制之義務
3.企業有積極處理用戶申訴與糾紛之義務
4.針對應用程式商店(アプリストア),課徵手續費(手数料)與會員付款結帳(課金)方式之限制,企業有詳細說明之義務
5.企業本身或關係企業與平臺其他用戶之間須公平競爭,例如:企業與直營或非直營商店之間,具有利害關係或有優待行為時,企業須公開其管理方針,並列入內部稽核事項,使其能檢視差別對待之正當性。
6.停用帳戶或刪除之手續,企業在30天之前,就該處置之內容和理由,對消費者有通知之義務。
7.退款或退貨之流程,企業有積極和具體說明之義務,且須將處置成果公開。
關於評鑑對象之指定,是依同法第4條第1項所授權,由日本經濟產業省進一步於2021年2月1日頒布政令,以事業種類與規模進行區分。此外,被列為評鑑對象之企業必須在每年5月底前,各自將企業內部的因應措施,提交總結報告,並由經濟產業大臣進行審閱。值得注意的是,依評鑑結果所要求的改善措施,原則上以企業自主改善為要旨,但日本政府目前正商討今後是否需要以強制力介入;對於被列為評鑑企業之後續改善措施及透明化法之推動方向,值得作為我國數位平臺治理政策之借鏡與觀察。
日本通過科學技術基本法等修正案,將創新與人文科技發展納為規範對象 資訊工業策進會科技法律研究所 2020年12月10日 日本國會於2020年6月24日通過由內閣府提出的「科學技術基本法等修正案」(科学技術基本法等の一部を改正する法律)[1],為整合修正科學技術基本法、科學技術與創新創造活性化法(科学技術・イノベーション創出の活性化に関する法律,下稱科技創新活性化法)等法律之包裹式法案。其旨在新增創新與人文科學相關科技發展目標,將之列入基本法。並因應此一立法目的調整,修正科技創新活性化法,增訂大學、研發法人出資與產業共同研究途徑,同時調整中小企業技術革新制度之補助規範。 壹、背景目的 日本內閣府轄下之整合科學技術與創新會議(総合科学技術・イノベーション会議)於2019年11月公布的「整合提振科學技術與創新目標下之科學技術基本法願景(科学技術・イノベーション創出の総合的な振興に向けた科学技術基本法等の在り方について)」報告書提出,科學技術與創新之議題高度影響人類與社會的願景,而近年聚焦之重點,則在於全球化、數位化、AI與生命科學之發展。該報告書並進一步揭示了科學技術基本法的修訂方向[2]:(1)納入「創新創造」(イノベーション創出)之概念;(2)自相互協力的觀點,併同振興自然學科與人文學科之科學技術發展;(3)允許大學與研發法人以自身收入資助具特定創新需求、或發展新創事業之外部人士或組織;(4)從鼓勵創新創造的角度,調適建構中小企業技術革新制度。 基於該報告書之決議要旨,內閣府於2020年3月10日向國會提出本次法律修正案,並於同年6月24日正式公告修正通過[3]。公告指出,AI、IoT等科學技術與創新活動的急遽發展,造就了人類社會推動願景和科技創新密不可分的現況。因之,本次修法除將人文科學項目納入基本法科學技術振興的範疇內,亦意圖落實同步推動科學技術及創新創造振興之政策構想,建構具整合性且二者並重發展的法制環境。 貳、內容摘要 本包裹式法案主要修正科學技術基本法與科技創新活性化法。首先,本次修正並列創新與科技發展為科學技術基本法規範主軸,因之,將該法更名為「科學技術與創新基本法」(科学技術・イノベーション基本法,下稱科技創新基本法),並修訂科技創新基本法立法目的為「提升科學技術水準」以及「促進創新創造」;同時,參照科技創新活性化法相關規定,明文定義創新創造為「透過科學發現或發明、開發新商品或服務、或其他具創造性的活動,催生新興價值,並使之普及,促成經濟社會大規模變化之行為」。同時,增訂科技與創新創造的振興方針主要包含:(1)考量不同領域的特性;(2)進行跨學科的整合性研究開發;(3)推動時應慮及學術研究與學術以外研究間的衡平性;(4)與國內外的各相關機關建立具靈活性且密切的合作關係;(5)確保科學技術的多元性與公正性;(6)使創新創造之振興與科學技術振興之間建立連動性;(7)有益於全體國民;(8)用於建構社會議題解決方案。此外,亦增訂研究開發法人、大學與民間企業之義務性規範,要求研究開發法人與大學應主動、且有計畫地從事人才養成、研發與成果擴散作為;而民間企業則應致力於和研發法人或大學建立合作關係,進行研發或創新創出活動。最後,基本法內原即有要求政府應定期發布「科學技術基本計畫」,作為未來一定期間內推動科技發展政策的骨幹,本次修正除將之更名為「科學技術與創新基本計畫」(科学技術・イノベーション基本計画),亦額外要求基本計畫應擬定培養研究與新創事業所需人才的施政方針。 另一方面,配合科技創新基本法修訂與政策方向,科技創新活性化法的修正重點則為:(1)新增本法適用範圍,擴及「僅與人文科學相關的科學技術」;(2)明文創設大學或研究開發法人得與民間企業合作進行共同研究的機制,允許大學或研究開發法人出資設立「成果活用等支援法人」,並給予人力與技術支援。其可將大學、研發法人持有之專利授權給企業、與企業共同進行研究或委外研究等,藉以推動研發成果產業化運用,透過計畫的形式,和企業間建立合作關係;(3)為鼓勵與促進中小企業與個人從事新興研發,調整設立「特定新技術補助金」制度,用以補助上述研發行為;每年度內閣府則需與各主管機關協議,就特定新技術補助金的內容與發放目的作成年度方針,經內閣決議後公開。同時,在特定新技術補助金下設「指定補助金」之類型,由國家針對特定待解決之政策或社會議題,設定研發主題,透過指定補助金的發放,鼓勵中小企業參與該些特定主題之研發。 參、簡析 本次科技創新基本法的修正,為日本國內的科技發展方向,作出法律層級的政策性宣示。除將人文學科相關的科技研發正式納入基本法的規範對象內,最主要的意義,在於使創新與科技發展同列為基本法的核心目的之一,顯示其科研政策下,創新與科技的推展實存在密不可分且相輔相成的關係,而有必要整合規劃。而科技創新活性化法一方面拓展大學、研發法人等學術性或公部門色彩較為強烈的機構與民間企業合作研發、成果產業化運用的途徑;另一方面,則延續近期相關政策文件強調創新價值應自社會需求中發掘的構想[4],設置了激勵中小企業投入社會議題解決方案相關研發的補助金類型。 我國立法體例上,同樣存在科學技術基本法的設計,用以從法制層級確立國內科技發展的基礎政策方向。於COVID-19疫情期間,技術研發的創新落地應用,亦已成為我國產出各式疫情應對方案、以及後疫情時期重要政策的關鍵之一。則如何延續我國對抗COVID-19過程中所掌握的協作與成果運用經驗,或可借鏡日本的作法,使創新能量能透過研發補助機制的優化,充分銜接政策與社會需求。 [1]〈科学技術基本法等の一部を改正する法律の公布について〉,日本內閣府,https://www8.cao.go.jp/cstp/cst/kihonhou/kaisei_tuuchi.pdf (最後瀏覽日:2020/12/08)。 [2]〈「科学技術・イノベーション創出の総合的な振興に向けた科学技術基本法等の在り方について」(概要)〉,日本內閣府,https://www8.cao.go.jp/cstp/tyousakai/seidokadai/seidogaiyo.pdf(最後瀏覽日:2020/12/08)。 [3]〈第201回国会(常会)議案情報〉,日本參議院,https://www.sangiin.go.jp/japanese/joho1/kousei/gian/201/meisai/m201080201047.htm(最後瀏覽日:2020/12/08)。 [4]〈中間とりまとめ2020未来ニーズから価値を創造するイノベーション創出に向けて〉,經濟產業省,https://www.meti.go.jp/press/2020/05/20200529009/20200529009-2.pdf(最後瀏覽日:2020/12/10)。
紐西蘭將設置食品安全科學研究中心並提供食安相關科研補助紐西蘭科學與創新大臣Steven Joyce與食品安全大臣Nikki Kaye,於今年(2014)4月16日宣佈該國將設置食品安全科學研究中心以因應食品安全危機。該中心預計於本年底前建成並投入使用,該國政府和產業界每年將聯合資助至少紐西蘭幣500萬元。該中心是為了促進、協調和提供食品安全科學與研究,並將提供食安相關科研補助,主要聚焦於涉及公共利益的食品安全科學和研究活動,涵蓋食品的整個價值鏈。 包括: 1.生物、化學、物理和放射性的食品安全風險; 2.與食品添加物質相關的風險; 3.食品安全的風險評估、管理及與公眾的良好溝通; 4.與國際科學界和現有的國際研究平臺展開合作。 紐西蘭食品安全科學研究中心起因自去年紐西蘭發生濃縮乳清蛋白受汙染事件,嚴重影響該國畜牧業外銷,為防範類似事件再發生,去年底政府研究報告指出29項改善目標,其中即包括設立該中心。 該中心成立後首先將徵求合作對象。紐西蘭商業、創新與就業部,初級產業部兩部會於2014年4月16日聯合發布合作意向徵求通知,有意承辦或者加盟中心的研究機構可以參加競標。商業、創新與就業部之科學委員會將負責遴選合作對象,得參加5月末食品安全科學研究中心合作研討會。同時,將徵求食安相關科研補助專案。兩部會在7月初,將向前述入選者發佈提案募集通知,特別鼓勵聯合提出專案申報書,後續將由獨立專家組成的委員會對其進行評估,最後由科學委員會做出補助決定。
歐盟發布《歐洲資料治理規則》草案歐盟執委會於2020年11月25日公布「歐洲資料治理規則」(Proposal for a Regulation on European data governance (Data Governance Act))草案。本立法草案係延續同年2月發布「歐洲資料戰略」(European data strategy)所提出之立法規劃,針對該戰略所揭示的資料治理政策願景,於制度面予以明文化。而本草案亦為該戰略發布後,首次提出的具體性措施。其制定的主要目的,在於透過強化資料中介機構(data intermediaries)的公信力、以及優化歐盟整體的資料共享機制,來提升資料的可取得性(availability)。 依草案條文內容,其主要立法面向如下: (1)界定本法的立法目的,在於規範歐盟內部再利用公部門所持有之特定類型資料的條件,確立資料共享服務的通報與監督框架,並針對基於利他(altruistic)目的蒐集處理資料之實體(entities),建構自願註冊的制度;另一方面則進行本法的名詞定義。 (2)公部門資料再利用機制:整體性規範由公部門所持有、但涉及商業機密、智慧財產權、個資等之資料再利用的一致性標準。其以保護既有的營業秘密、個資、智財權等為前提,確立該些資料再利用的標準作法(如原則以非專屬形式再利用、可收取合理費用)。有意再利用上述資料的公部門,應於技術面保護其隱私與機密性。 (3)針對資料共享服務供應商的通報機制:要求提供資料共享服務的供應商,於正式對外提供其服務前,應先向各成員國的權責機關通報其業務,藉以增加外界對共享個資與非個資之資料機制的信賴度,同時降低資料共享的交易成本。同時,資料共享服務供應商於資料交換應保持中立,不能為其他目的使用資料;其共享服務應以開放及協作的方式進行,並優化自然人或法人查閱與控制其資料的環境,藉以強化個資自主權。 (4)資料利他主義(data altruism)的明文化:定義非營利、具普遍性共同目標之組織,得向歐盟註冊成為資料利他主義組織。透過此認證制度,增加組織公信力,以推動個人或公司出於公共利益,自願提供資料。同時,授權歐盟執委會可制定通用之歐洲資料利他主義同意書(European data altruism consent form),減少個別收集資料使用同意書之成本。 (5)成員國資料共享權責機關之職責:其應公正、透明、一致、及時履行其職責,監督與實施資料共享服務供應商與資料利他主義組織的通報與註冊機制。例如,其有權要求資料共享服務供應商提交必要訊息,以確保其作為是否符合本法要求。同時,權責機關成員不得為資料共享服務的供應商。 (6)歐洲資料創新委員會(European Data Innovation Board):此為一專家小組之設置要求,負責協助成員國權責機關之作法,遵循資料治理法所訂標準。
IBM提出「人工智慧日常倫理」手冊作為研發人員指引隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability) 由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment) 人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability) 人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。 該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。