生命科學領域的企業應透過營業秘密保護其部分創新

近期由於營業秘密議題受到重視,引起廣泛討論,美國實務界律師於彭博社法律專欄(Bloomberg Law Practical Guidance)指出生命科學領域的企業不應僅尋求專利的保護,而應考慮透過營業秘密來保護其部分創新,比如:製造技術、分析工具及方法、配方等,並指出保護營業秘密所應採取的具體措施。

在Mayo Collaborative Servs. v. Prometheus Labs一案中,美國最高法院認為診斷方法並非真正的應用,因此不符合可取得專利的資格;在Ass'n for Molecular Pathology v. Myriad Genetics一案中,美國最高法院認為將天然基因分離的技術不符合可取得專利的資格。由上述判決可以發現,生命科學領域的公司能取得專利的範圍被限縮了,因此該領域的企業應考慮透過營業秘密來保護其創新。

營業秘密相對於專利的優勢在於,專利有保護期限,但營業秘密若未公開揭露則能持續受到保護。另外,根據美國專利法(Patent Act),專利保護之客體限於有用且新穎的發明,但營業秘密保護之客體不僅限於此。不過,以營業秘密保護創新同樣存在風險,比如可能面臨前員工、現任員工將其洩露或是由於合作案導致其被竊取的情況等。

為避免上述情況之發生,企業應採取下列措施,包括:
1. 要求員工簽署保密協議,並於協議中具體說明營業秘密之範圍、保密期限,同時確保員工離職時歸還與營業秘密有關的資訊及設備;
2. 將涉及營業秘密的文件標示為機密;
3. 將機密文件及檔案儲存於上鎖的櫃子或受密碼保護的電腦中;
4. 根據員工的職責,僅允許必要的員工存取營業秘密資訊;
5. 對員工進行教育訓練,使其了解哪些資訊被視為營業秘密而不應洩露;
6. 透過監視設備監控保存營業秘密的位置;
7. 與合作單位簽署合作協議時,確保協議中有明確規定哪些資訊被視為營業秘密、分享營業秘密的方式、保密期限、授權的範圍等。

綜上所述,由於可取得專利的範圍被限縮,生命科學領域的企業應考慮透過營業秘密來保護其部分創新。在以營業秘密保護其創新時,應確保有採取與員工簽署保密協議、識別機密、權限控管、教育訓練、與合作單位簽署合作協議等措施。關於前述營業秘密管理措施之重要內容,企業可以參考資策會科法所創意智財中心發布的「營業秘密保護管理規範」,並進一步了解該如何管理,以降低自身營業秘密外洩之風險,並提升其競爭優勢。

本文同步刊登於TIPS網站(https://www.tips.org.tw

相關連結
你可能會想參加
※ 生命科學領域的企業應透過營業秘密保護其部分創新, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9066&no=67&tp=1 (最後瀏覽日:2026/01/22)
引註此篇文章
你可能還會想看
歐盟提出現行個資保護指令規範之修正草案

歐盟提出現行個資保護指令規範之修正草案 科技法律研究所 2013年10月07日 壹、事件摘要   歐盟於1995年所制定之「個人資料保護指令」(Data Protection Directive,95/46/EC,下稱個資保護指令),其基本原則確保了歐盟會員國個人資料基本權利之保障,後續也成為國際相關立法時之參考依據。但由於個資保護指令制定時為框架式立法模式,歐盟各會員國仍須將相關規定內國法化,導致各會員國間對於個人資料保護標準產生差距。 貳、重點說明 一、立法緣起   歐盟現行之「個資保護指令」是第一部解決關於個人資料處理與自由流通保護之指令,主要在於提供歐盟境內關於個人資料及隱私權保護之規定。但由於該指令使各會員國之規範不具統一性,且制定之時科技尚屬發展階段。為解決科技發展與各國形成之保護差距,歐盟執委會(European Commission)在2012年1 月25 日,向歐洲理事會(European Commission)及歐洲議會(European Parliament)正式提出「一般個人資料保護規則」(General Data Protection Regulation)草案共91 條。預計於2015年施行,並取代現行個資保護指令,全面並一致性適用於各會員國。 二、關鍵改變   本次一般個人資料保護規則草案相較於現行個資保護指令,主要有資料當事人權利行使新增與強化、當事人同意要件標準提高、適用主體擴大、申訴權力強化、資料管理人資料保護責任之加重、損害賠償與相關罰則之規定等,並將各項規定更加明確化,以解決長期以來歐盟會員國間因保護水準不一所形成之衝突現象。 參、事件評析   一般個人資料規則草案提出後,歐盟與英國分別針對新規則草案進行評估。歐盟執委會認為,新規則可協助歐盟境內解決長期以來因個資法保護水準不一所形成之衝突,進而為當地企業帶來約23億歐元之效益;但英國當地卻持反面見解,認為新法將使企業提高所需擔負之行政成本,且高規格之法遵要求也使資料管理人陷入難以遵守之情況,進而影響歐盟之競爭力。國際上激烈的討論聲浪與分歧之見解,也使得該規則草案自提出至今已一年多的時間,仍未正式拍板定案。   歐盟於1995年制定之個資保護指令,自1998年生效之後,不僅在各會員國進行個資保護時扮演關鍵性角色,更為國際上個人資料保護或隱私保護之參考依據,其動向更為各國所專注與留意。而隨著時代轉變與科技演進,歐盟期許未來不只是在歐盟境內,更可將個人資料或隱私保護相關資訊與要求,擴及歐盟以外之國家,因而於2012年提出新規則草案,而後續相關發展,更值得我們持續留意跟進。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

ENUM服務前景可期?

產業創新條例因應放寬公司研發抵減、加強留才制度之修正草案

TOP