2023年5月17日,日本國會通過了《著作權法》部分條文修正案,並於同月26日公布(2023年第33號法)。
隨著數位化的進步,內容的創作、傳播和使用變得更加容易,不再只是過去主流的出版社、電視台等「專業人士」才能從事,而是一般普羅大眾也可以參與創作,並將內容貼在網路上。與此同時,既有著作之重新利用的需求等情形均日益增加,然而此類內容的問題在於難與著作權人取得聯絡,不一定可順利使用。
為了解決上述問題,本次修正重點之一係新增第67之3條,根據該條規定,儘管著作之利用人採取了確認著作權人授權意願等措施,但仍無法確認著作權人授權意願時,得向文部科學省所屬之文化廳申請裁定,經文化廳長裁定允許利用並繳納補償金後,利用人得於該裁定所定之期間內(申請書所載之期限最長不得超過3年)先行使用該著作。新裁定利用制度放寬了確認著作權人意願之程序與要求,降低使用門檻,並同時規定著作權人可聲請撤銷使用,如果文化廳長裁定撤銷使用,則利用人應停止繼續使用該著作,著作權人得依利用人實際使用期間之比例領取補償金。另為簡化及加快程序,關於新裁定利用制度之申請受理、要件確認與補償金額的決定等部分事務,文化廳長得指定特定之民間機構作為聯絡窗口負責相關行政手續之處理(第104條之33以下相關規定)。
新裁定利用制度的建立,將有助於促進著作之流通利用,即認為已充分週知著作權人,且盡可能地確認著作權人等是否可以使用的意思,仍不能確認意思狀態之著作,而採取一定措施放寬使用是妥適的。因考慮到週知等需要時間,乃決定從公布日(2023年5月26日)起3年內施行。
本文同步刊登於TIPS網(https://www.tips.org.tw)
德國聯邦最高法院(Bundesgerichtshof, BGH)在2018年2月20日的判決(Urt. V. 20.02.2018 – Az. VI ZR 30/17)中認定,網路評價網站(Bewertungsportale)之業務雖未違反聯邦資料保護法(Bundesdatenschutzgesetz, BDSG)規定,但其評價立場必須維持中立。醫師評價平台「Jameda」(www.jameda.de)之商業行為違反此項原則,故須依原告要求,刪除其在該網站之所有個人資料。 本案中,原告為執業皮膚科醫師,且非醫師評價平台「Jameda」之付費會員。然「Jameda」不僅將該醫師執業簡介列入其網站,且同時在其個人簡介旁,列出與其執業地點相鄰,具競爭關係之其他同為皮膚科醫師之付費會員廣告。反之,付費會員不但可上傳個人照片,且在其執業簡介旁,不會出現與其診所相鄰之競爭者廣告。 聯邦最高法院依據聯邦資料保護法第35條第2項第2款第1號 (§35 Abs. 2 S. 2 Nr. 1 BDSG) 規定,並經衡量同法第29條第1項第1款第1號 (§29 Abs. 1 S. 1 Nr. 1 BDSG) 規定之效果後,同意原告對「Jameda」提出刪除網頁所列個資之請求。法院見解認為,「Jameda」的廣告策略使其失去資訊與意見傳遞者之中立角色,並以自身商業利益為優先,故其言論自由不得優於原告之資訊自主權(informationelle Selbstbestimmung)。 該判決強制網路評價平台嚴格審查本身之廣告供應商務,並與聯邦憲法法院(Bundesverfassungsgericht)見解一致,用於商業目的之言論表達僅有低於一般言論自由的重要性。儘管如此,評價平台仍被視為介於患者間不可或缺的中介者(unverzichtbare Mittelperson),可使互不相識的病患,藉此獲得經驗交流的機會。 儘管本案判決同意原告刪除評價網站中所儲存個人資料之請求,但見解中,仍肯定評價網站具有公開醫療服務資訊之功能,符合公眾利益,受評價醫師被公開之個人簡介亦僅涉及與社會大眾相關之範圍。針對網站評分及評論功能之濫用,醫師仍可對各種不當行為分別採取法律途徑保障自身權益。由此可知,德國聯邦最高法院仍認定,評價網站之評分與評論機制,仍符合聯邦資料保護法規範之宗旨,惟若該評價網站以評價機制作為商業行銷手段,則不得主張其言論及意見表達自由高於受評價者之資訊自主權。
美國國家標準與技術研究院「隱私框架1.0版」美國國家標準與技術研究院(NIST)於2020年1月16日發布「隱私框架1.0版」(NIST Privacy Framework Version 1.0),為促進資料的有效利用並兼顧對隱私權的保障,以風險管理(risk management)的概念為基礎建構企業組織隱私權管理框架。本隱私框架依循NIST於2018年所提出的「健全關鍵基礎設施資安框架1.1版」(Framework for Improving Critical Infrastructure Cybersecurity Version 1.1)架構,包含框架核心(Core)、狀態評估(Profile)與實施層級(Implementation Tier),以利組織能夠同時導入隱私與資安兩種框架。由隱私框架核心所建構的風險管理機制,透過狀態評估來判斷當前與設定目標的實施層級,進而完成組織在隱私保護上的具體流程與資源配置。 NIST基於透明、共識、兼顧公私利害關係人的程序訂定本隱私框架,用以促進開發者導入隱私設計思維(privacy by design),以及協助組織保護個人隱私,其目標包含透過支持產品或服務設計中的倫理決策(ethical decision-making)及最小化對隱私的侵害來建立客戶的信任;在當前與未來的產品或服務中,因應持續變化的技術與政策環境遵守對隱私的保護義務;以及促進個人、企業夥伴、稽核者(assessor)與監管者(regulator)在隱私權保護實踐上的溝通與合作。 本隱私框架並非法律或法規,亦不具備法律效果,而是做為數位時代下NIST協助企業導入隱私權管理制度的參考工具,企業或組織將能基於本隱私框架靈活應對多樣化的隱私需求,掌握其產品或服務所隱含的隱私權侵害風險,並識別隱私權相關法律規範,包含加州消費者隱私法(California Consumer Privacy Act)與歐盟一般資料保護規則(General Data Protection Regulation, GDPR)等,提出更具創新性與有效性的解決方案,並有效因應AI與物聯網技術的發展趨勢。
新加坡科技與研究局針對未來工廠提出研究規劃及方向新加坡科技與研究局(Agency for Science, Technology and Research)於2017年7月26日提出未來工廠(Toward the factories of the future)概念及相關研究方向,自動化(Automation)、機器人(robotics)、先進電腦輔助設計(advanced computer-aided design)、感測和診斷技術(sensing and diagnostic technologies)將徹底改變現代工廠,可製造的產品範圍廣泛,從微型車乃至於飛機皆可生產。積層製造(Additive Manufacturing),又稱3D列印(3D printing),可使用單一的高科技生產線來創造許多不同的產品項目,而不需要傳統大規模生產的設計限制和成本,伴隨未來高效能電腦和感測技術之進步,積層製造速度也會隨之加快。而智慧工廠(smart factories)將與物聯網(IOT)、雲端計算(cloud computing)、先進機器人(advanced robotics)、即時分析(real-time analytics)與機器學習(machine learning)等技術與積層製造技術結合,將大為提升生產速度及產量。 為加速及改善積層製造的製程,最重要的方法之一,是使用材料物理學的基本原理來模擬製造過程,而近期更引進跨學科之研究,「模擬」最終產品化學成分和機械性能的微觀結構。因積層製造是一個複雜又困難的過程,透過變化既有規則之模擬(Game-Changing simulations),若建立完成模型且模擬成功,將成為積層製造的殺手級技術。在未來的五到十年,我們將看到更多的零件從積層製造技術生產出來,而且這種技術有機會成為未來工廠的生產基礎。由於現行材料及製造流程與機器必須配合一致,些許的差異皆會生產出不同品質之產品,故未來積層製造工廠的結果穩定重現性(repeatability)和標準化(standardization),將是產品商業化的主要障礙與挑戰。
Facebook支付5.5億美元解決涉及侵犯隱私的訴訟案使用過Facebook(臉書)上傳照片時,不難發現其內建功能可透過臉部辨識「自動標記」(tag)好友的功能,建議用戶標記照片內的人物,而自從該功能於2011年啟用後,始終存有侵害用戶隱私權的疑慮。本案訴訟自2015年開始,及針對臉書「自動標記」的標籤建議功能爭論。美國於2018年經美國聯邦法院裁定,該功能在未經用戶同意的情況下蒐集並存儲相關使用者的生物特徵資料(biometric data),違反美國伊利諾州(Illinois)生物識別資料隱私法(Biometric Information Privacy Act)。雖然臉書已開始公開與用戶說明其可選擇關閉其識別功能,並針對上述聯邦法院判決提出上訴,卻仍於2019年8月敗訴。因此臉書同意以5.5億美元和解,用於支付伊利諾州的用戶(符合條件的)及訴訟相關費用。