2023年5月17日,日本國會通過了《著作權法》部分條文修正案,並於同月26日公布(2023年第33號法)。
隨著數位化的進步,內容的創作、傳播和使用變得更加容易,不再只是過去主流的出版社、電視台等「專業人士」才能從事,而是一般普羅大眾也可以參與創作,並將內容貼在網路上。與此同時,既有著作之重新利用的需求等情形均日益增加,然而此類內容的問題在於難與著作權人取得聯絡,不一定可順利使用。
為了解決上述問題,本次修正重點之一係新增第67之3條,根據該條規定,儘管著作之利用人採取了確認著作權人授權意願等措施,但仍無法確認著作權人授權意願時,得向文部科學省所屬之文化廳申請裁定,經文化廳長裁定允許利用並繳納補償金後,利用人得於該裁定所定之期間內(申請書所載之期限最長不得超過3年)先行使用該著作。新裁定利用制度放寬了確認著作權人意願之程序與要求,降低使用門檻,並同時規定著作權人可聲請撤銷使用,如果文化廳長裁定撤銷使用,則利用人應停止繼續使用該著作,著作權人得依利用人實際使用期間之比例領取補償金。另為簡化及加快程序,關於新裁定利用制度之申請受理、要件確認與補償金額的決定等部分事務,文化廳長得指定特定之民間機構作為聯絡窗口負責相關行政手續之處理(第104條之33以下相關規定)。
新裁定利用制度的建立,將有助於促進著作之流通利用,即認為已充分週知著作權人,且盡可能地確認著作權人等是否可以使用的意思,仍不能確認意思狀態之著作,而採取一定措施放寬使用是妥適的。因考慮到週知等需要時間,乃決定從公布日(2023年5月26日)起3年內施行。
本文同步刊登於TIPS網(https://www.tips.org.tw)
澳洲隱私保護辦公室(Office of the Australian Information Commissioner, OAIC)於2019年9月發布「健康隱私指引」(Guide to health privacy)協助健康服務提供者了解及實踐相關規範所制定之隱私義務以確保個人資料安全。依據1988年澳洲隱私法(Privacy Act 1988)規定,健康服務指所有評估、維持、改善或管理個人健康狀況;或是診斷、治療或紀錄個人疾病或健康狀況之行為。而健康服務提供者除了醫院及醫療人員,更包含其他專業人員例如健身房及減肥診所、私立學校及托兒所、遠端醫療服務等所有涉及健康資料並提供健康服務之單位及人員。由於澳洲隱私法要求服務提供者必須積極建立、實施及維護隱私合法處理程序,為了協助所有健康服務提供者確實遵守法定義務,以減少健康資料之隱私風險問題,OAIC制定「健康隱私指引」提出八大步驟要求健康服務提供者確保遵守義務並保障所持有之個人資料: 制定並實施隱私管理計畫,確保遵守澳洲隱私原則(Australian Privacy Principles, APPs)。 制定明確的責任制以進行隱私管理,並及時提供員工幫助與指導。 建立個人資料檔案紀錄,以確認持有之個人資料。 了解法律規範之隱私義務並實施法定流程以履行義務。 定期舉辦員工隱私培訓課程以強化團隊基礎知識。 建立隱私權政策並於網頁上呈現或是提供手冊說明相關內容。 保護所持有之資料不被濫用、遺失或未經授權的修改及揭露等。 制定資料外洩因應措施,針對資料外洩進行危機處理。
何謂美國NITRD計畫 ?美國NITRD計畫係指支持「網絡運作與資訊科技研發計畫(Networking and Information Technology Research and Development,NITRD)」之政府補助計畫。美國國會推動所謂的「網絡運作與資訊科技研發現代法(Networking and Information Technology Research and Development Modernization Act)」新法案,藉此取代1991年通過的高速運算法(High Performance Computing Act),進行現代化修法。新法將用來繼續支持「網絡運作與資訊科技研發計畫(Networking and Information Technology Research and Development,NITRD)」之政府補助計畫,統整21個聯邦行政機關用於發展資通訊科技之業務與預算,提升政府整體效率。藉由補助學校之外,以公私協力之方式補助企業發展非加密網路、電腦、軟體、資安及相關資訊科技,將藉由加速基礎建設發展,強化資安和隱私保護之資通訊科技。但補助主軸將取代舊法對高速運算電腦研發之重視,轉為重視發展虛實融合系統(Cyber-Physical System,CPS),以利鋪設大數據或物聯網發展所需之資通訊科技基礎建設。而這些資通訊科技的重要性不僅只是影響一般的資通訊科技發展,更能協助其他許多科技及工程領域加速發展,包括從太空科技到生技研發等。
歐美擴大永續報告書的揭露範圍,企業可透過歷程管理增進資料透明度根據美國瑞生國際律師事務所(Latham & Watkins)於2024年1月發布的ESG年度報告指出,隨漂綠議題延燒,ESG報告不受信任為一課題,因此國際逐步擴大ESG監管,多國透過立法強制企業應揭露永續報告書或供應鏈資訊,比如:歐盟於2023年1月生效之《企業永續報告指令》(Corporate Sustainability Reporting Directive, CSRD),要求企業揭露的永續資訊需增加供應鏈資訊的透明度;美國證券交易委員會(SEC)於2024年3月6日通過規則,要求上市公司及公開發行公司揭露碳排放報告等氣候風險相關資訊。 為因應ESG帶來的挑戰,報告建議企業應採取流程化管理方式,了解產品進出口涉及的其他國家對ESG揭露資訊的要求,加以規劃並建置資料控管規範、進行人員教育訓練以及確認ESG相關資料的所有權歸屬。 由於碳排放量的計算沒有一致標準,且難以確保供應鏈上下游所提供的碳排資訊真實、未經竄改等問題,外界不容易信任企業永續發展書提倡的供應鏈減碳策略。國內企業可參考資策會科法所創意智財中心發布的《重要數位資料治理暨管理制度規範(EDGS)》,透過流程化管理,從制度規劃及留存供應鏈二氧化碳排放量或二氧化碳減量等產品相關資料歷程來增進ESG資料透明度。 本文同步刊登於TIPS網(https://www.tips.org.tw)
初探物聯網的資通安全與法制政策趨勢初探物聯網的資通安全與法制政策趨勢 資訊工業策進會科技法律研究所 2021年03月25日 壹、事件摘要 在5G網路技術下,物聯網(Internet of Things, IoT)的智慧應用正逐步滲入各場域,如智慧家庭、車聯網、智慧工廠及智慧醫療等。惟傳統的資安防護已不足以因應萬物聯網的技術發展,需要擴大供應鏈安全,以避免成為駭客的突破口[1]。自2019年5月「布拉格提案[2]」(Prague Proposal)提出後,美國、歐盟皆有相關法制政策,試圖建立各類資通訊設備、系統與服務之安全要求,以強化物聯網及相關供應鏈之資安防護。是以,本文觀測近年來美國及歐盟主要的物聯網安全法制政策,以供我國借鏡。 貳、重點說明 一、美國物聯網安全法制政策 (一)核心網路與機敏性設備之高度管制 1.潔淨網路計畫 基於資訊安全及民眾隱私之考量,美國政府於2020年4月提出「5G潔淨路徑倡議[3]」(5G Clean Path initiative),並區分成五大構面,包括:潔淨電信(Clean Carrier)、潔淨商店(Clean Store)、潔淨APPs(Clean Apps)、潔淨雲(Clean Cloud)及潔淨電纜(Clean Cable);上述構面涵蓋之業者只可與受信賴的供應鏈合作,其可信賴的標準包括:設備供應商設籍國的政治與治理、設備供應商之商業行為、(高)風險供應商網路安全風險緩和標準,以及提升供應商信賴度之政府作為[4]。 2.政府部門之物聯網安全 美國於2020年12月通過《物聯網網路安全法[5]》(IoT Cybersecurity Improvement Act of 2020),旨在提升聯邦政府購買和使用物聯網設備的安全性要求,進而鼓勵供應商從設計上導入安全防範意識。本法施行後,美國聯邦政府機關僅能採購和使用符合最低安全標準的設備,將間接影響欲承接政府物聯網訂單之民間業者及產業標準[6]。 另外,美國國防部亦推行「網路安全成熟度模型認證[7]」(Cybersecurity Maturity Model Certification, CMMC),用以確保國防工程之承包商具備適當的資訊安全水平,確保政府敏感文件(未達機密性標準)受到妥適保護。透過強制性認證,以查核民間承包商是否擁有適當的網路安全控制措施,消除供應鏈中的網路漏洞,保護承包商所持有的敏感資訊。 (二)物聯網安全標準與驗證 有鑑於產業界亟需物聯網產品之安全標準供參考,美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)提出「物聯網網路安全計畫」,並提出各項標準指南,如IR 8228:管理物聯網資安及隱私風險、IR 8259(草案):確保物聯網裝置之核心資安基準等。 此外,美國參議院民主黨議員Ed Markey亦曾提出「網路盾」草案[8](Cyber Shield Act of 2019),欲建立美國物聯網設備驗證標章(又稱網路盾標章),作為物聯網產品之自願性驗證標章,表彰該產品符合特定產業之資訊安全與資料保護標準。 二、歐盟物聯網安全法制政策 (一)核心網路安全建議與風險評估 歐盟執委會於2019年3月26日提出「5G網路資通安全建議[9] 」,認為各會員國應評鑑5G網路資通安全之潛在風險,並採取必要安全措施。又在嗣後提出之「5G網路安全整合風險評估報告[10]」中提及,5G網路的技術漏洞可能來自軟體、硬體或安全流程中的潛在缺陷所導致。雖然現行3G、4G的基礎架構仍有許多漏洞,並非5G網路所特有,但隨著技術的複雜性提升、以及經濟及社會對於網路之依賴日益加深,必須特別關注。同時,對供應商的依賴,可能會擴大攻擊表面,也讓個別供應商風險評估變得特別重要,包含供應商與第三國政府關係密切、供應商之產品製造可能會受到第三國政府施壓。 是故,各會員國應加強對電信營運商及其供應鏈的安全要求,包括評估供應商的背景、管控高風險供應商的裝置、減少對單一供應商之依賴性(多元化分散風險)等。其次,機敏性基礎設施禁止高風險供應商的參與。 (二)資通安全驗證制度 歐盟2019年6月27日生效之《網路安全法[11]》(Cybersecurity Act),責成歐盟網路與資訊安全局(European Union Agency for Cybersecurity, ENISA)協助建立資通訊產品、服務或流程之資通安全驗證制度,確保資通訊產品、服務或流程,符合對應的安全要求事項,包含:具備一定的安全功能,且經評估能減少資通安全事件及網路攻擊風險。原則上,取得資安驗證之產品、服務及流程可通用於歐盟各會員國,將有助於供應商跨境營運,同時能協助消費者識別產品或服務的安全性。目前此驗證制度為自願性,即供應商可以自行決定是否對將其產品送交驗證。 參、事件評析 我國在「資安即國安」之大架構下,行政院資通安全處於2020年底提出之國家資通安全發展方案(110年至113年)草案[12],除了持續強化國家資安防禦外,對於物聯網應用安全亦多有關注,其間,策略四針對物聯網應用之安全,將輔導企業強化數位轉型之資安防護能量,並強化供應鏈安全管理,包括委外供應鏈風險管理及資通訊晶片產品安全性。 若進一步參考美國與歐盟的作法,我國後續法制政策,或可區分兩大性質主體,採取不同管制密度,一主體為受資安法規管等高度資安需求對象,包括公務機關及八大領域關鍵基礎設施之業者與其供應鏈,其必須遵守既有資安法課予之高規格的安全標準,未來宜完善資通設備使用規範,包括:明確設備禁用之法規(黑名單)、高風險設備緩解與准用機制(白名單)。 另一主體則為非資安法管制對象,亦即一般性產品及服務,目前可採軟性方式督促業者及消費者對於資通設備安全的重視,是以法制政策推行重點包括:發展一般性產品及服務的自我驗證、推動建構跨業安全標準與稽核制度,以及鼓勵聯網設備進行資安驗證與宣告。 [1]經濟部工業局,〈物聯網資安三部曲:資安團隊+設備安全+供應鏈安全〉,2020/08/31,https://www.acw.org.tw/News/Detail.aspx?id=1149 (最後瀏覽日:2020/12/06)。 [2]2019年5月3日全球32個國家的政府官員包括歐盟、北大西洋公約組織 (North Atlantic Treaty Organization, NATO)的代表,出席由捷克主辦的布拉格5G 安全會議 (Prague 5G Security Conference),商討對5G通訊供應安全問題。本會議結論,即「布拉格提案」,建構出網路安全框架,強調5G資安並非僅是技術議題,而包含技術性與非技術性之風險,國家應確保整體性資安並落實資安風險評估等,而其中最關鍵者,為確保5G基礎建設的供應鏈安全。是以,具體施行應從政策、技術、經濟、安全性、隱私及韌性(Security, Privacy, and Resilience)之四大構面著手。Available at GOVERNMENT OF THE CZECH REPUBLIC, The Prague Proposals, https://www.vlada.cz/en/media-centrum/aktualne/prague-5g-security-conference-announced-series-of-recommendations-the-prague-proposals-173422/ (last visited Jan. 22, 2021). [3]The Clean Network, U.S Department of State, https://2017-2021.state.gov/the-clean-network/index.html (last visited on Apr. 09, 2021);The Tide Is Turning Toward Trusted 5G Vendors, U.S Department of State, Jun. 24, 2020, https://2017-2021.state.gov/the-tide-is-turning-toward-trusted-5g-vendors/index.html (last visited Apr. 09, 2021). [4]CSIS Working Group on Trust and Security in 5G Networks, Criteria for Security and Trust in Telecommunications Networks and Services (2020), https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/200511_Lewis_5G_v3.pdf (last visited Nov. 09, 2020). [5]H.R. 1668: IoT Cybersecurity Improvement Act of 2020, https://www.govtrack.us/congress/bills/116/hr1668 (last visited Mar. 14, 2021). [6]孫敏超,〈美國於2020年12月4日正式施行聯邦《物聯網網路安全法》〉,2020/12,https://stli.iii.org.tw/article-detail.aspx?no=64&tp=1&d=8583 (最後瀏覽日:2021/02/19)。 [7]U.S. DEPARTMENT OF DEFENSE, Cybersecurity Maturity Model Certification, https://www.acq.osd.mil/cmmc/draft.html (last visited Nov. 09, 2020). [8]H.R.4792 - Cyber Shield Act of 2019, CONGRESS.GOV, https://www.congress.gov/bill/116th-congress/house-bill/4792/text (last visited Feb. 19, 2021). [9]COMMISSION RECOMMENDATION Cybersecurity of 5G networks, Mar. 26, 2019, https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019H0534&from=GA (last visited Feb. 18, 2021). [10]European Commission, Member States publish a report on EU coordinated risk assessment of 5G networks security, Oct. 09, 2019, https://ec.europa.eu/commission/presscorner/detail/en/IP_19_6049 (last visited Feb. 18, 2021). [11]Regulation (EU) 2019/881 of the European Parliament and of the Council of 17 April 2019 on ENISA and on Information and Communications Technology Cybersecurity Certification and Repealing Regulation (EU) No 526/2013 (Cybersecurity Act), Council Regulation 2019/881, 2019 O.J. (L151) 15. [12]行政院資通安全處,〈國家資通安全發展方案(110年至113年)草案〉,2020/12,https://download.nccst.nat.gov.tw/attachfilehandout/%E8%AD%B0%E9%A1%8C%E4%BA%8C%EF%BC%9A%E7%AC%AC%E5%85%AD%E6%9C%9F%E5%9C%8B%E5%AE%B6%E8%B3%87%E9%80%9A%E5%AE%89%E5%85%A8%E7%99%BC%E5%B1%95%E6%96%B9%E6%A1%88(%E8%8D%89%E6%A1%88)V3.0_1091128.pdf (最後瀏覽日:2021/04/09)。