加拿大政府於2023年10月23日至12月4日針對「生成式人工智慧對著作權的影響」(consultation on the implications of generative artificial intelligence for copyright)進行公眾諮詢,以期了解生成式人工智慧對於加拿大著作權市場之變化,進而修訂《著作權法》(Copyright Act),本次諮詢文件中討論重點整理如下:
1.文字和資料探勘(Text and Data Mining, TDM):是否需要因應TDM修改加拿大原本的著作權法,包含著作權法中合理使用行為(29條)和暫時性重製行為(30.71條)等得不構成侵害之例外條款。學者、AI使用者以及AI技術團體大多持肯定見解,認為TDM行為中使用的著作時不需要權利人的著作權授權;然創意產業則多持否定見解,認為不應該為TDM創設例外,否則將會使得TDM所使用之作品原著作人無法主張權利以獲得授權金。
2.人工智慧生成作品之著作人身分及著作權歸屬:因利用生成式人工智慧所創作或輔助創作之文字、圖像和音樂有作者身分不明確之虞,因此加拿大政府希望可以對此加以澄清,並討論是否需要修改原本的著作權法案中相關規定。針對作者身分不明確之爭議,加拿大政府提出了三種可能的規範模式:
(1)闡明著作權保護只適用於自然人創作的作品;
(2)將人工智慧生成作品之作者歸屬於在創作作品時運用技能和判斷力的自然人,凡自然人可以在人工智慧技術輔助下創作的作品中貢獻足夠的技能和判斷力,即可被視為該作品的作者;
(3)為人工智慧生成的作品創設一套新的權利。
3.人工智慧之侵權責任:人工智慧係透過大量的資料庫來生成一項作品,過程中可能出現侵害他人著作權之情形,而加拿大現行的著作權法框架下很難認定侵權行為之責任歸屬。加拿大現行的著作權法要求被侵權人(著作人)必須證明侵權人明知其重製行為侵犯他人著作權,且就該他人著作加以重製,但一般人難以瞭解人工智慧系統開發及訓練過程,因此難證明人工智慧系統研發與利用過程中的業者、工程師或其他相關人等是否有侵權行為。因此加拿大政府希望利害關係人就此議題提供更多意見,以協助將來修法、提高市場透明度。
生成式人工智慧雖然提供了便利的創作方式並帶來巨大經濟利益,卻也可能侵害他人著作權,因此平衡著作人之權利並兼顧經濟發展是加拿大政府及國際社會課正積極解決的議題。
美國司法部和專利商標局於今年(2013)1月9日發表聯合聲明,呼籲法官應謹慎對待「標準關鍵專利」(Standard Essential Patent)產品的禁售問題。 在該項聯合聲明發表前,美國聯邦貿易委員會 (Federal Trade Commission, FTC) 亦曾主張除少數特定情況外,侵犯標準關鍵專利的產品應處以賠償金,而非核發禁售令(Sales Bans)。該項聯合聲明要點歸納如下: 1.以公眾利益為最高優先考量,謹慎核發禁售令 聲明呼籲美國國際貿易委員會(United States International Trade Commission, ITC) 決定是否禁止使用關鍵專利的產品進口時,應以公眾利益為最高優先考量,此舉將增加持有「標準關鍵專利」的公司獲得禁售令之困難度,未來擁有「標準關鍵專利」的公司僅在極少數特殊的情況下獲得禁售令。 2.未具強制拘束力 聯合聲明僅代表司法部和專利商標局相關當局對專利問題的看法,雖可能影響法官心證,但聲明不具強制拘束力。 近來,美國各地方法院與ITC皆有未准核發禁售令之實際案例。例如:去年(2012)6月美國芝加哥法官Richard Posner駁回 Google 因部分標準關鍵專利有侵權疑慮申請禁售 iPhone;ITC在Apple Inc. 與Samsung Electronics 的專利訴訟中,認定Apple Inc. 未侵犯 Samsung Electronics的標準關鍵專利,並拒絕核發禁售令。
中華人民共和國《出版管理條例》之介紹 美國參議院通過CISA網路安全資訊共享法案美國參議院於2015年10月27號通過網路安全資訊共享法(Cybersecurity Information Sharing Act; CISA)。本案以74票對21票通過,今年稍早眾議院通過類似法案,預計接下來幾周送眾議院表決。歐巴馬政府及兩院議員已就資訊共享法案研議多年,目前可望兩院就立法版本達成一致而立法成功。 主導本案的參議院情報委員會(Intelligence Committee)主席Richard Burr於法案通過後發表聲明表示,「這個作為里程碑的法案最終會更周全地保護美國人的個資不受外國駭客侵害。美國商業與政府機構遭受以日計的網路攻擊。我們不能坐以待斃」。副主席Sen. Feinstein於肯定法案對網路安全的助益之外,認為「我們在杜絕隱私憂慮的方面上盡了所有努力」。 CISA授權私人機構於遭受網路攻擊,或攻擊之徵兆(threat indicators)時,基於網路安全的目的,立即將網路威脅的資訊分享給聯邦政府,並且取得洩漏客戶個資的責任豁免權。基於同樣的目的,私人機構也被授權得以監視其網路系統,甚至是其客戶或第三人的網路。但僅以防禦性措施為限,並且不得採取可能嚴重危害他人網路之行動。相對於此,聯邦政府所取得該等私人機構自發性提供的網路威脅資訊,係以具體且透明的條款規制。此外,國土安全部(Department of Homeland Security)於符合隱私義務方針的方式下,管理電子網路資訊得以共享給其他合適的聯邦機構。檢察總長及國土安全部門秘書並建立聯邦政府接收、共享、保留及使用該等網路資訊的要件,以保護隱私。 相對於此,許多科技公司對此持反對態度,例如蘋果與微軟。隱私支持者更是於法案通過前後呼籲抵制,稱其為監視法。主要的論點圍繞在企業洩漏個資訊的寬鬆免責條款,這將會促使隱私憂慮。另一方面,法案反對者也不信任聯邦政府機構將會落實隱私保護,FBI、國家安全局(National Security Agency, NSA)及國家安全部則樂於輕易地取得、共享敏感的個資而不刪除之。 這些憂慮或許可以由法案投票前,網路法及網路安全學者共同發出的公開信窺知。「整體來說,(CISA)對有缺陷的網路安全中非常根本但真切的問題一無所助,毋寧僅是為濫權製造成熟的條件」。信中提到,該法案使聯邦機構得近用迄今為止公眾的所有資訊,並且對公司授權的範圍無明確界線,使公司對判斷錯誤的可能性毫無畏懼。這對於網路安全沒有幫助,方向應該是引導各機構提高自身的資訊安全及良好管理。
美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。