日本經產省發布《促進資安攻擊受害資訊共享檢討會最終報告書》,以加速資安情資共享

日本經濟產業省(下稱經產省)於2023年11月22日發布《促進資安攻擊受害資訊共享檢討會最終報告書》(サイバー攻撃による被害に関する情報共有の促進に向けた検討会の最終報告書),主張共享資安攻擊受害資訊,掌握資安攻擊全貌,防止損害範圍擴大。經產省提出具體建議如下:

1.促進各專門組織間之資訊共享:藉由專門組織間的資訊共享,及早採取適當因應措施,避免損害持續擴大,並降低受害成本。所謂專門組織包含資安廠商、資安監控中心(Security Operation Center, SOC)營運商、防毒廠商,與依法令成立從事資安事件諮詢與分析之非營利組織,例如:一般社團法人日本電腦網路危機處理暨協調中心(一般社団法人JPCERTコーディネーションセンター),以及一般財團法人日本網路犯罪對策中心(一般財団法人日本サイバー犯罪対策センター)等。

2.共享無從識別受害組織之資訊:為加快資訊共享,經產省建議將資料去識別化至無從識別受害組織之程度,即可不經受害組織同意而共享資訊。

3.提出《攻擊技術資訊處理與活用指引草案》(攻撃技術情報の取扱い・活用手引き(案)):為提升專門組織共享資訊成效,經產省於指引中彙整受害組織資料去識別化作法,以及各專門組織間共享攻擊技術資訊之具體策略。

4.於保密協議中加入免責條款:經產省建議於受害組織與專門組織簽訂之保密協議中,加入專門組織免責條款,使專門組織具有利用或揭露攻擊技術資訊裁量權,對於利用或揭露資訊,致生受害組織被識別等損害時,非因故意或重大過失不須負擔法律責任,以利推動資訊共享。

相關連結
你可能會想參加
※ 日本經產省發布《促進資安攻擊受害資訊共享檢討會最終報告書》,以加速資安情資共享, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9118&no=65&tp=1 (最後瀏覽日:2025/04/12)
引註此篇文章
你可能還會想看
FDA發布「制定醫療器械在上市前核准(PMA)、低風險創新器材(De Novo)分類和人道用途器材免除(HDE)的利益-風險決策之不確定性考量指引草案

  美國食品和藥物管理局(FDA)於2018年9月6日發布關於「制定醫療器械在上市前核准(PMA)、低風險創新器材(De Novo)分類和人道用途器材免除(HDE)的利益-風險決策之不確定性考量指引草案。」   為滿足FDA促進公共健康的使命,醫療器械上市前核准(PMA)通常涉及較高的不確定性,因此本指引是適當的解決利益風險的判定以支持FDA的決策。包含考量患病群願意接受醫療器械帶來的益處及風險之更多不確定性,特別是沒有可接受的替代治療方案時。   根據指引草案,FDA依據具體情況,判定其利益-風險的適當程度之不確定性,包括: (1) 醫療器械可能帶來好處程度。 (2) 醫療器械存在的風險程度。 (3) 關於替代治療或診斷的利益-風險之不確定程度。 (4) 如果可能,需瞭解患者對醫療器械可能帶來的益處和風險之不確定性觀點。 (5) 公共衛生需求的程度。 (6) 依據臨床證據可支持上市前之可行性。 (7) 能夠減少或解決醫療器械的上市後利益-風險留下之不確定性。 (8) 上市後緩解措施的有效性。 (9) 建立決策類型。(如上市前核准(PMA)和人道用途器材免除(HDE)的核准標準不同。) (10) 對於早期患者訪問醫療器械的可能帶來的益處。   本指引草案中,FDA基於考量有關醫療器械臨床/非臨床訊息之利益風險,需與FDA的規範、監管機關和要求要有一致性。

日本修正「請求揭露匿名網路霸凌者個人資料」之程序

  網際社群服務的普及,如Face Book、Instagram、Twitter或網路論壇,將人與人之間的社群連結從實體拓展到虛擬,社群網路的蓬勃發展充分展現言論自由,人人皆以匿名方式藏身於社群網路的保護傘下盡情抒發己見,但相對也產生層出不窮的網路霸凌事件。   日本於修正《關於特定電子通訊服務業者損害賠償責任限制及使用者資訊揭示法》(特定電気通信役務提供者の損害賠償責任の制限及び発信者情報の開示に関する法律)前,遭受匿名網路霸凌的被害人若想對加害人提起損害賠償訴訟,須同時對社群網路服務業者及網路服務供應業者聲請禁止刪除資料假處分,被害人承擔巨大的程序成本,卻仍須承擔訴訟程序中,社群網路供應商因系統保存時效屆期而自動刪除加害人IP位置資料之風險。   為了遏止頻繁的網路霸凌事件,日本國會已於2021年4月21日表決通過修正《關於特定電子通訊服務業者損害賠償責任限制及使用者資訊揭示法》,將「請求揭露匿名網路霸凌者個人資料」由原本的假處分及通常訴訟程序修正為非訟程序,被害人僅須向法院提出聲請狀,如法院判斷該聲請可特定網路服務供應業者,被害人即可請求社群網路服務業者及網路服務供應業者提供匿名誹謗者(即加害人)的姓名、地址及網路登錄紀錄。另外,為避免IP位置資訊被刪除的風險,法院可於非訟程序進行中,先命社群網路服務業者禁止刪除該IP位置資訊,大幅推進被害人程序利益之保障。

美國加州通過綠色化學法規

  由於完善控管機制迄今仍付之闕如,而市面上諸多含有危險化學物質的產品,尚無法立即要求廠商將之下架或提出解決方案,因此引起消費大眾、學界人士及公共健康倡議團體對於消費安全之關切;美國加州為有別於僅針對危險化學物質逐項管理的一般法令,轉而採取整體規範之包裹立法方式,於2008年9月底通過AB 1879與SB 509兩項綠色化學法規,增訂於「健康與安全法典(Health and Safety Code)」,促使商品在設計階段減少毒性物質之接觸。   根據AB 1879法令,由加州環保署(California Environmental Protection Agency) 所管轄之毒性物質控制部門(Department of Toxic Substances Control),現行除具備管理危險材料之儲存、使用與廢棄等法定職責外,另新增計畫如下: (1) 應於2011年1月1日前修改法規,優先針對引發關切的危險化學物質進行生命週期評估,並將評估結果遞交加州環境政策議會(California Environmental Policy Council);此外,毒性物質控制部門應研發潛在替代品,研擬減低或避免化學物質暴露之方法。 (2) 於2009年7月1日前成立綠絲帶科學小組(Green Ribbon Science Panel),用以管理奈米科技、風險分析、公眾健康等十五項與危險性化學物質相關之題材,並為日後政策修訂提供具科學基礎之建議。 (3) 除非另有法規限制,應要求業界呈報管理化學物質之詳細資料,公開作為民眾參考之用;如涉及商業機密,應有程序上之保障。 再者,SB 509法令要求環境健康風險評估辦公室(Office of Environmental Health Hazard Assessment)彙整危險化學物質之特性,並由毒性物質控制部門建立線上資料庫,使民眾便於查詢危險化學物質之相關資訊。   綜上所述,綠色化學法規的訂立,係回應消費大眾對於市售產品之疑慮,因而植基於科學界與現實生活,著重危險化學物質運用及暴露時所為之風險評估,並期於2011年前得以有效掌握化學物質,進而維持勞動環境安全、減少處理毒性廢棄物之成本,達成保護生態與民眾健康之目標。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP