歐盟通過《歐盟綠色債券規則》,建立綠色債券監管框架

歐盟於2023年10月11日發布《歐洲綠色債券監管及環境永續債券市場與永續連結債券自願性揭露規則》(Regulation on European Green Bonds and optional disclosures for bonds marketed as environmentally sustainable and for sustainability-linked bonds,下稱《歐洲綠色債券規則》),預計於2023年12月20日生效,針對在歐盟境內發行之綠色債券建立一套監管框架,課予欲使用「歐洲綠色債券」(European Green Bond)或「EuGB」等名稱發行環境永續債券的發行人一定義務,促進綠色債券的一致性和可比性,以保障投資人。綠色債券是發展綠色技術、能源效率和提升資源運用以及其他永續相關基礎設施投融資的主要工具之一,本規則之通過也被視為落實歐盟永續成長融資策略以及向碳中和、循環經濟轉型的一大進展。

《歐洲綠色債券規則》規範重點如下:
1.資金用途限制:《綠色債券規則》所有透過歐盟綠色債券募得的資金,原則上均必須投資於符合《歐盟永續分類標準》(EU Taxonomy)技術篩選標準的永續經濟活動,只有在所欲投資的經濟活動類別尚未被納入該標準時得為例外,且以總額之15%為限;
2.資訊揭露:綠色債券之發行人有義務揭露該債券之概況介紹(Factsheet)、資本支出計畫、資金使用分配報告、衝擊報告,並於債券公開說明書敘明資金用途,並得選擇進一步說明該債券之資金如何與自身企業整體環境永續目標相結合;
3.外部審查:前述資訊均須由已向歐洲證券與市場管理局(European Securities and Markets Authority)註冊之外部機構進行審查,以確保其準確性及可靠性。

本文為「經濟部產業技術司科技專案成果」

※ 歐盟通過《歐盟綠色債券規則》,建立綠色債券監管框架, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9120&no=64&tp=1 (最後瀏覽日:2026/02/13)
引註此篇文章
你可能還會想看
英國資訊委員辦公室提出人工智慧(AI)稽核框架

  人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。   AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。   「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。   ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。

馬來西亞個人資料保護法之發展仍有諸多不確定因素

  馬來西亞於2010年6月即通過個人資料保護法,延宕經年,該法終於自2013年底開始正式施行,而數項配套規範亦同步施行。前個資保護部門首長Abu Hassan Ismail則被任命為新設之個資保護專員,受通訊及多媒體部部長之指揮監督。   從規範內容架構觀察,馬國此部個資法之範疇堪稱恢弘,不但包括了諸多的實質行為規定,例如,在行為規範的面向上,馬國個資法要求其所謂的資料使用者(data user) 必須遵守多項個資保護原則並尊重當事人權利;此外,該法亦有不少與個資保護相關之組織及程序規則,例如,該法設有行政救濟法庭,如對個資保護專員之決定有所不服者,即可在此提出救濟。惜該法之適用對象不包括公部門,且在適用情形方面,除排除了純粹因個人或家庭目的而蒐集、處理、利用個人資料外,亦針對諸多情形分別排除該法所設之不同個資保護原則之適用,且更賦予個資保護專員另行指定排除適用情形之權限,因而除將相當程度限制該法影響範圍外,並使該法之適用與發展增加許多不確定之因素。

美國聯邦地方法院加州北區法院禁止REALNETWORKS公司販賣Real DVD

  美國聯邦地方法院加州北區法院於2009年8月11日判決禁止REALNetworks公司致力或便利於製造、進口、供公眾使用、為販賣之要約或販賣以存取、複製及再散佈等他法規避CSS之保護或受著作權保護之DVD內容之軟體產品,這些產品如已知的RealDVD,或Vegas、Facet或其他名稱之產品,或有近似功能的軟體或其他產品、服務或裝置、設備或其零件。理由在於RealDVD軟體違反了數位千禧年著作權法案(Digital Millennium Copyright Act of 1998,DMCA)禁止規避電腦加密技術之規定。DVD若被CSS(Content Scramble System)鎖碼,則DVD播放者必須取得授權方能播放此光碟片,這些防止技術就是為了避免被複製而設計的。因為RealDVD是一種從含有著作權的DVD製造了一個永久的複製品的軟體技術,而這無法置外於數位千禧年著作權法案所賦予的義務,即使從個人合理使用的條文詮釋,亦無法認為是合法的。   這件案子是美國迪士尼、Sony、派拉蒙、二十世紀福斯、NBC、華納兄弟、哥倫比亞等好萊塢主要電影公司以及DVD複製控制協會(DVD copy control Association,DVD CCA) 於2008年對於REALNetworks公司銷售RealDVD軟體之行為提起訴訟,指控其行為違法法令。   而兩日後(2009年8月13日),於DVD複製控制協會(DVD CCA)訴KALEIDESCAPE公司上訴案中,加州聯邦上訴法院又判決KALEIDESCAPE公司販售DVD複製軟體(Kaleidescape system)違反數位千禧年著作權法案。   此兩個判決對於好萊塢電影工業無疑是一大勝利,但對於DVD複製軟體的科技發展卻是一項打擊。另外在判決中法官也強調這樣的判決決定,仍然保留了個人合理使用的合法空間。

美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

TOP