歐盟執委會發布人工智慧創新政策套案

歐盟執委會(European Commission)於2024年1月24日發布AI創新政策套案(AI innovation package),將提供全面性的激勵措施,協助AI新創公司、中小企業與歐盟AI技術之發展。AI創新政策套案預計將修訂〈歐盟高效運算聯合承諾〉(the European High Performance Computing Joint Undertaking),以創建AI工廠(AI factories);成立AI辦公室(AI Office);並建立歐盟AI新創與創新交流(EU AI startup and innovation communication),重點分述如下:

(1)AI工廠:歐盟執委會在將2027年前透過〈歐盟高效運算聯合承諾〉投資80億歐元,在歐盟境內建設全新的超級電腦,或升級現有高效運算設備,實現高速機器學習(fast machine learning)與訓練大型通用AI模型(large general-purpose AI models),使AI新創公司有機會使用超級電腦與大型通用AI模型來開發各種AI應用。並且,AI工廠將坐落於大型資料存儲中心(large-scale data storage facility)周圍,讓AI模型於訓練時可取得大量可靠的資料。其次,AI工廠將藉由開放超級電腦來吸引大量人才,包含學生、研究員、科學家與新創業者,以培養歐盟高階AI人才,供未來歐盟持續發展可信任的AI(Trustworthy AI)。

(2)AI辦公室:該辦公室將設置於歐盟執委會內,用於確認與協調歐盟成員國AI政策的一致性。此外,該辦公室未來亦將用於監督即將通過之歐盟《AI法案》(AI Act)的執行成效。

(3)歐盟AI新創與創新交流:歐盟執委會將透過〈展望歐洲〉(Horizon Europe)與〈數位歐洲計畫〉(Digital Europe Programme),在2027年前投入40億歐元的公部門與私人投資,俾利歐盟開發生成式AI(Generative AI)模型。該政策套案亦將加速歐盟共同資料空間(Common European Data Spaces)之發展,使歐洲企業得取得可靠且具價值性之資料來訓練AI模型。最後,執委會將啟動歐盟〈生成式AI倡議〉(GenAI4EU initiative),將AI工廠所訓練之生成式AI應用於工業用與服務型機器人、醫療保健、生物科技與化學、材料與電池、製造與工程、車輛移動、氣候變遷與環境保護、網路安全、太空、農業等實際領域,刺激產業創新發展,改善人類生活。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 歐盟執委會發布人工智慧創新政策套案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9143&no=64&tp=1 (最後瀏覽日:2026/02/07)
引註此篇文章
你可能還會想看
美國雅虎公司面臨垃圾訊息的團體訴訟

  美國芝加哥地方法院於2016年01月04日肯認關於美國雅虎公司(Yahoo Inc)因於2013年3月對美國行動服務斯普林特公司(Sprint Corp)用戶散發垃圾訊息的團體訴訟。本件原為2014年由原告Rachel Johnson提訴,芝加哥地方法院法官Manish Shah認定本件原告已經充分主張本件團體訴訟的共通性,往後所有在2013年被發送該等訊息的用戶,都能加入本件訴訟集團提訴。而根據法院的文書資料,未來將會有超過50萬的斯普林特公司用戶能加入本件訴訟。   原告主張雅虎的簡訊服務向其以及其他斯普林特用戶寄發垃圾訊息而違反1991制定的電信消費者保護法(The Telecom Consumers Protection Act of 1991)。該等簡訊服務會將發信者的線上即時訊息轉為簡訊寄送至受信者的行動電話,同時系統會自動加入預設的「歡迎」訊息。依照電信消費者保護法規定,禁止以自動系統向使用者發送未得同意的簡訊、傳真或是撥打電話,違反者每一行為將被求償500~1500美元。因此本件若主張成立,雅虎將面臨每則訊息最高1500美元的損害賠償。   雅虎雖然主張該等訊息並非電信消費者保護法所禁止的擾人、極端巨量的通信,僅為對接收者已經收到來自其他發送者訊息的提醒而已。同時雅虎也主張若肯認該等團體訴訟,將導致損害賠償數額與原告所受損害不相當,而引發後續訴訟。法院並不接受雅虎的主張。現階段雅虎對法院的決定拒絕評論。

美國政府設立Apps.gov網站推動雲端科技運用

  美國政府在9月15日宣布,為了減少基礎建設的相關費用以及降低政府運算系統的環境衝擊,因此設立Apps.gov網站,展示並提供經政府認可的雲端科技運用。   據美國聯邦政府CIO Vivek Kundra表示,Apps.gov網站是美國政府首度對外發表,針對減少IT花費政策的成果。目前美國政府IT預算幾乎都花費在設立資料中心,單在國家安全部下就設有23個資料中心,而這也造成了聯邦政府的資源消耗在2000年到2006年間增加了兩倍,為了落實減少基礎建設花費的政策,並基於安全性的考量,希望能夠盡量利用現有的系統。   美國政府目前推動的雲端運算倡議計劃有三個主要內容,第一個主要內容即為全新的Apps.gov網站,提供企業一個情報交換平台、社交媒介與雲端IT服務。雖然目前網站尚未完全運作,甚至還曾造成一連串的錯誤訊息,但美國政府當局仍希望該網站最終能成為一次即可滿足的服務商店(one-stop shop),可在一個平台上提供多種類的雲端運算服務。Kundra表示,美國能源部已經開始使用該網站執行部分相關業務。   該計畫的第二個重點則是預算,美國政府在2010年將會致力推動雲端運算領航計畫,並為此編列年度預算,希望能投入更多輕量的工作流程(lightweight workflows)至雲端科技的發展。而在2011年,美國政府則預計會發布相關指導準則至各機關部門。   最後,該計劃亦會配合安全性、隱私及採購等相關政策。Kundra表示,將會確保所有資料都受到完善保護。   Google創辦人之一Sergey Brin也宣佈Google將會投入部份雲端運算系統專供聯邦政府使用,此系統與Google提供給一般企業的系統相似,但會針對政府需求稍做修改。除了Google之外,Microsoft、Facebook、Salesforce.com及Vimeo等公司亦提供雲端運算服務予政府機關使用。

美國證券交易委員會發布指引要求公司進一步揭露加密資產之潛在影響

美國證券交易委員會(United States Securities and Exchange Commission,下稱SEC)於2022年12月8日發布「致公司有關近期加密資產市場發展之樣本函(Sample Letter to Companies Regarding Recent Developments in Crypto Asset Markets)」指引文件(下稱本指引),指導公司應針對自身業務涉及近期加密資產市場動盪事件(如虛擬貨幣交易所破產等),進行直接或間接影響之風險揭露,以符合聯邦證券法規之資訊揭露(如風險及風險暴露等)義務。SEC轄下之企業金融處(Division of Corporation Finance,以下簡稱金融處)認為公司應向投資者提供具體且量身訂製之市場動盪事件報告、揭露公司在動盪事件中之狀況以及可能對投資者造成之影響。爰此,本負有常態報告義務的公司應據此考量現有的揭露內容是否須進行更新。 金融處說明,為加強並監督公司對資訊揭露要求之遵守狀況,爰依據1933年證券法(Securities Act of 1933)及1934年證券交易法(Securities Exchange Act of 1934)內涵,要求公司亦須針對應作出聲明的實際狀況,進一步揭露相關重大訊息,且不得進行誤導。本指引所要求公司明確揭露加密資產市場發展的重大影響,包括公司對競爭對手及其他市場參與者之風險暴露;與公司流動資金及獲取融資能力相關的風險;及與加密資產市場法律程序、調查或監管影響相關的風險等。 值得注意的是,本指引並未列出公司應考量問題的詳細清單,個別公司應視自身情況評估已存在之風險,或是否可能受到潛在風險事項的影響。由於公司所揭露之文件事前通常不會經過金融處審查,因此金融處也敦促各公司應自主依循本指引進行相關文件準備。

NIH公布最新GWAS基因型與表現型數據資料庫分享近用方針

  經過了一整年向各界諮詢與彙整各方意見後,美國國家衛生研究院(NIH)於今年8月底,公布其所資助之GWAS基因型與表現型數據資料庫(genotype-phenotype datasets)之分享近用方針。此方針希望在保障研究參與者的個人隱私前提下,協助科學研究社群取得相關基因數據資料。GWAS數據資料對科學有顯著的幫助,並具有龐大的潛在公共利益,然而,提供個人的基因型與表現型資料進行科學研究,涉及個人隱私與秘密之保護,故具有高度的敏感性而受到大眾關切。   因此,NIH在訂定這項方針時,為了搜集各方意見,首先於去年5月,宣布計畫更新GWAS的數據資料分享政策,後於去年8月公開徵詢大眾對方針之意見,次又依據所蒐集之各方意見,於去年12月針對此分享政策舉辦會議進行討論,根據這些討論所形成之共識,併同NIH內部討論之結果,最後形成此項分享政策。   方針中指出,如何在促進科學研究之目的,與保護相關參與人的權利間取得平衡,是相當重要的議題,故本方針分別對研究人員近用之程序、基因數據資料的處理與參與者權利之保護進行詳細規範。舉例來說,本方針要求欲近用資料庫的研究人員,提供其研究必須使用此資料庫的書面說明資料;另外也會對所有存放在資料庫的數據資料進行去個人化處理,使該項資訊無法再以技術判別,並使用隨機方法加密,以確保參與者的隱私與保密資料不遭外洩。根據NIH表示,此方針雖然僅是對GWAS數據資料庫的近用作規範,但未來亦有意將其作為近用其他類似資料庫的規範參考架構。

TOP