簡析日本電子帳簿等保存制度與電子資料真實性之確保
資訊工業策進會科技法律研究所
2024年03月29日
日本一般社團法人數位信任協議會於2024年3月15日以數位資料真實性確保的重要性及證明其真實性的時戳技術為題,舉行JDTF電子帳簿保存法解說研討會。研討會中由國稅廳課稅總括課解說電子帳簿保存法上與資料真實性相關的利用者需留意的要點,以及時戳技術的利用意義,並舉出具體的利用者事例作為介紹。
壹、事件摘要
日本電子帳簿等保存制度係指,稅法上等有保存必要的「帳簿」或是「收據、請求書等與國稅相關的文件」,非以紙本方式,而是以電子資料的形式保存的制度,此制度被區分為電子帳簿等保存、掃描保存及電子商業交易資料保存等3種制度[1]。
貳、重點說明
日本電子帳簿保存法於2022年的修法中,廢除電子帳簿等保存制度以及掃描保存制度的承認制度等[2],其中尤其值得關注的是電子商業交易的電子保存義務化。意即,自2022年起個人事業者或法人需要以符合特定要件的方式保存該電子商業交易資料。惟由於日本過往對於所接收的電子商業交易資料均以書面原本的形式進行保存,因此2022年的電子帳簿保存法修正案,雖將所接收的電子商業交易資料以電子資料的形式進行保存作為原則,但是由於許多公司尚無法應對電子資料的保存要求,故日本將2022年1月1日至2023年12月31日的2年間,作為電子商業交易資料保存的宥恕期間,在宥恕期間內無法滿足電子商業交易資料且有正當理由的公司,仍然可以將電子商業交易資料以書面的形式保存,並在稅務調查時將所保存的資料以書面形式提交給稅務機關[3]。日本電子帳簿保存法中所指之宥恕期間,係指自2022年起至2023年12月31日間,無法將電子商業交易資料以電子資料形式進行保存的企業,在符合特定之條件下,使其得繼續維持書面資料保存的期間。須留意宥恕期間僅有2年,公司或法人須於宥恕期間的2年內建立可以符合電子資料保存要件的環境整備。以下就2024年實施的日本電子帳簿3種制度進行說明。
一、電子帳簿等保存制度
對於自身最初透過電腦等製作的帳簿如會計軟體製作的入出帳等,或是與國稅相關的資料如透過電腦製作的請求書、決算書等,在符合具備系統相關資料如系統概要書或操作說明書、在保存場所具備電腦、程式、螢幕、印表機及其操作指南,並將記錄事項以畫面或書面的形式呈現,使其可以快速輸出,以及可以應對稅務職員基於質問檢查權的電子資料下載要求等的要件下,可以不以書面列印紙本的方式,而係以數位資料的形式保存的制度[4][5]。
二、掃描保存制度
決算相關資料以外的國稅相關資料,在符合輸入期間的限制、時戳的付與、版本管理、具備可讀取的裝置、可以快速輸出、具備系統概要書等,以及確保檢索機能等的要件下,能以手機或掃描機器掃描的電子資料形式取代該資料書面原本進行保存[6][7]。
三、電子商業交易資料保存制度
被課與所得稅申告或法人稅等帳簿、資料保存義務者,在處理訂單、契約書、收據、報價單、請求書等或與其相當的電子資料時,在確保真實性及可視性的要件下,需要保存該電子商業交易資料[8]。
電子商業交易資料保存制度中的確保真實性要件包含接收已付與時戳的資料、對所保存的資料付與時戳、不論是資料的接收還是保存,皆已可留存訂正刪除履歷或無法進行訂正刪除的系統進行,以及制定關於防止不正當訂正刪除的事務處理規則並依循。可視性要件則包含具備監控、操作說明書等資料以及具備充足的資料檢索要件[9]。
日本電子帳簿等保存制度雖區分為3種不同的制度,惟其中對個人事業者及法人具有強制效力的僅有電子商業交易資料保存制度,電子帳簿等保存制度及掃瞄保存制度則係設置誘因機制促使業者遵循,如電子帳簿等保存制度中創設其所保存的帳簿如符合訂正刪除履歷留存等「優良電子帳簿」的要件,則可減輕過少申告加算稅的稅金[10];掃描保存制度則讓企業可以透過手機或掃描機器將資料原本掃描成電子資料並以之取代書面紙本進行保存,減少企業保存書面資料的空間成本,同時亦可減低資料檢索時所需花費的時間與人力成本。
參、事件評析
日本電子帳簿保存法中對個人事業者與法人在保存電子商業交易資料時,課以確保電子資料真實性以及可視性的義務,並透過時戳技術的利用,確保個人事業者與法人可以達成電子資料真實性以及可視性的要求。
對於電子資料真實性的管理,我國資訊工業策進會科技法律研究所創意智財中心於2021年發布重要數位資料治理暨管理制度規範(下稱EDGS),協助企業管理內部重要數位資料。EDGS中亦肯認應保存電子資料的訂正刪除歷程,並以時戳技術及存證技術確保資料未經變更、刪除及竄改之真實性。我國企業如欲對自身的數位資料進行管理及存證等,可參考資訊工業策進會科技法律研究所創意智財中心所發布之EDGS建立資料管理流程,以降低數位資料管理相關風險。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
[1]国税庁,〈電子帳簿保存法の内容が改正されました〜 令和5年度税制改正による電子帳簿等保存制度の見直しの概要 〜〉,頁1(2023年),https://www.nta.go.jp/law/joho-zeikaishaku/sonota/jirei/pdf/0023003-082.pdf(最後閱覽日:2024/03/26)。
[2]〈税務手続の電子化に関する資料〉,財務省,https://www.mof.go.jp/tax_policy/summary/tins/i04.htm(最後閱覽日:2024/03/26)。
[3]国税庁,〈電子帳簿保存法一問一答【電子取引関係】〉,頁35(2022),https://www.nta.go.jp/law/joho-zeikaishaku/sonota/jirei/pdf/0021006-031_03.pdf(最後閱覽日:2024/03/26)。
[4]同註1。
[5]国税庁,〈はじめませんか、帳簿・書類のデータ保存(電子帳簿等保存)〉,頁1-2(2023),https://www.nta.go.jp/law/joho-zeikaishaku/sonota/jirei/tokusetsu/pdf/0023006-085_02.pdf(最後閱覽日:2024/03/26)。
[6]同註1。
[7]国税庁,〈はじめませんか、書類のスキャナ保存〉,頁1-2(2023),https://www.nta.go.jp/law/joho-zeikaishaku/sonota/jirei/tokusetsu/pdf/0023006-085_03.pdf(最後閱覽日:2024/03/26)。
[8]同註1。
[9]同註3,頁8。
[10]同註5,頁2。
美國交通部(Department of Transportation)於2020年1月8日公布「確保美國於自動駕駛技術之領導地位:自駕車4.0」(Ensuring American Leadership in Automated Vehicle Technologies : Automated Vehicles 4.0)政策文件,提出三個核心原則及相對應的策略規劃: 一、 使用者與社會的保護: 整合自動駕駛技術之安全性,包括防堵對自駕車性能之詐欺或誤導行為,以強化民眾對此新興技術的信心。 與自駕車技術開發商、製造商及服務商合作,預防與降低惡意使用自動駕駛技術所造成的公共安全威脅及犯罪,如制定網路安全標準、於運輸系統之資料傳輸媒介及資料庫設計能夠防止、反應、偵測潛在或已知危險之可行作法。 要求製造商於設計和結合相關自動駕駛技術時,採取具整體風險考量之方式,以確保資料安全性與公眾隱私保護,特別是針對駕駛者與乘客,以及第三人資料存取、分享及使用。 支援與協助自動駕駛技術研發,並透過提供多樣化商品和服務,滿足消費者需求並增加自駕車的普及性,使國人能使用安全且能負擔的移動載具。 二、 保障市場效率: 採取靈活及技術中立政策,由大眾選擇具經濟及有效率的運輸方案。 透過相關智慧財產法規,保護相關技術,並持續推動經濟增長之政策及提升國內技術創新競爭力。 收集與研擬國內外法規資料,並使自動駕駛技術產品及服務能夠與國際標準接軌。 三、 促進與協調各方合作: 積極協調全國自動駕駛技術研究、法規和政策,以利有效運用各機構資源。 參考國際間自動駕駛技術標準及監理法規,並與各州政府及業界共同研擬與整合自動駕駛技術至現行運輸系統標準與相關法規。
專利連結專利連結(patent linkage,亦有稱patent registration linkage)是1984年美國《藥品價格競爭及專利期回復法(Hatch-Waxman Act, HWA)》所創設。傳統上,醫藥主管機關與專利主管機關的權責是有所區分的。然而,醫藥主管機關因為醫藥管理制度與專利制度的連結,使得醫藥主管機關須審查專利相關事務,即醫藥主管機關在審查學名藥上市許可申請時,必須同時判斷該藥品是否侵害專利藥公司就該藥品所掌握的專利。 專利連結制度可以採取幾種形式,最簡單形式的專利連結可能涉及了以下的要求:當有學名藥廠對專利藥公司所生產的的專利藥品提出學名藥,並尋求醫藥主管機關批准時,則應向專利藥公司告知學名藥廠的身份。強度較強的專利連結,在該專利藥品的專利到期或者無效之前,可以禁止醫藥主管機關核發上市許可給學名藥品。而更強的專利連結不僅可以禁止核發上市許可,也可以禁止在專利期間內對學名藥品的審查。 我國目前並未採納專利連結制度,但在我國目前擬積極參與的《泛太平洋夥伴協議(TPP)》中則要求成員應採納專利連結制度,故未來我國動向將值得關注。
印度對TK( Traditional Knowledge傳統知識 )保護提出的建議修正案近年來許多先進國家的藥廠或是生技公司紛紛到生物資源豐富的國家從事生物探勘活動,希望可以尋找合適的生技產品候選者 (candidate) ,也因此產生許多不當佔有的生物盜竊 (biopiracy) 事件。 由於印度本身在 2002 年專利法修正時,特別規定生技發明之專利申請者若使用生物物質 (biological material) ,應揭露其地理來源 (source of geographical origin) ,未揭露其來源地或提供錯誤資訊者,則構成專利撤銷之理由; 2005 年的專利法修正的重點之一為「加強專利授予前異議 (pre-grant opposition) 機制」,意即未揭露生物物質之來源地或提供錯誤資訊者,或者申請專利之權利內容含有傳統知識者,可提出異議之事由。 目前國際間針對是否應強制規定申請人應揭示其來源地等仍無共識。從 2001 年的杜哈發展議程的談判會議結果即可知,由於該談判採取 「單一承諾( Single Undertaking )」模式且可從不同議題間相互掛勾,加上開發中及低度開發會員採取結盟方式來壯大談判立場,在某些關鍵議題與美國、歐盟等主要會員國形成抗衡局面。 開發中國家對於 TRIPs 第 27 條第 3 項 b 款的審議特別在乎,認為 TRIPs 協定應該修訂應納入上述的揭露需求外,還必須提供事先告知且同意 (prior informed consent) ,以及因該專利而獲取的利益與來源地分享之證明。 因此,印度提出修正 TRIPs 協定的建議,強制會員國必須改變內國法律,規定專利申請者必須揭露其發明所使用的生物物質來源,並希望能在今年 12 月香港部長會議裡討論。
G7第四屆資料保護與隱私圓桌會議揭示隱私保護新趨勢G7第四屆資料保護與隱私圓桌會議揭示隱私保護新趨勢 資訊工業策進會科技法律研究所 2025年03月10日 七大工業國組織(Group of Seven,下稱G7)於2024年10月10日至11日在義大利羅馬舉辦第四屆資料保護與隱私機構圓桌會議(Data Protection and Privacy Authorities Roundtable,下稱圓桌會議),並發布「G7 DPAs公報:資料時代的隱私」(G7 DPAs’ Communiqué: Privacy in the age of data,下稱公報)[1],特別聚焦於人工智慧(AI)技術對隱私與資料保護的影響。 壹、緣起 由美國、德國、英國、法國、義大利、加拿大與日本的隱私主管機關(Data Protection and Privacy Authorities, DPAs)組成本次圓桌會議,針對數位社會中資料保護與隱私相關議題進行討論,涵蓋「基於信任的資料自由流通」(Data Free Flow with Trust, DFFT)、新興技術(Emerging technologies)、跨境執法合作(Enforcement cooperation)等三大議題。 本次公報重申,在資通訊技術主導的社會發展背景下,應以高標準來審視資料隱私,從而保障個人權益。而DPAs作為AI治理領域的關鍵角色,應確保AI技術的開發和應用既有效且負責任,同時在促進大眾對於涉及隱私與資料保護的AI技術認識與理解方面發揮重要作用[2]。此外,公報亦強調DPAs與歐盟理事會(Council of Europe, CoE)、經濟合作暨發展組織(Organisation for Economic Co-operation and Development, OECD)、亞太隱私機構(Asia Pacific Privacy Authorities, APPA)、全球隱私執行網路(Global Privacy Enforcement Network, GPEN)及全球隱私大會(Global Privacy Assembly, GPA)等國際論壇合作的重要性,並期望在推動資料保護與建立可信賴的AI技術方面作出貢獻[3]。 貳、重點說明 基於上述公報意旨,本次圓桌會議上通過《關於促進可信賴AI的資料保護機構角色的聲明》(Statement on the Role of Data Protection Authorities in Fostering Trustworthy AI)[4]、《關於AI與兒童的聲明》(Statement on AI and Children)[5]、《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》(Reducing identifiability in cross-national perspective: Statutory and policy definitions for anonymization, pseudonymization, and de-identification in G7 jurisdictions)[6],分別說明重點如下: 一、《關於促進可信賴AI的資料保護機構角色的聲明》 繼2023年第三屆圓桌會議通過《關於生成式AI聲明》(Statement on Generative AI)[7]後,本次圓桌會議再次通過《關於促進可信賴AI的資料保護機構角色的聲明》,旨在確立管理AI技術對資料保護與隱私風險的基本原則。G7 DPAs強調許多AI技術依賴個人資料的運用,這可能引發對個人偏見及歧視、不公平等問題。此外,本聲明中還表達了擔憂對這些問題可能透過深度偽造(Deepfake)技術及假訊息擴散,進一步對社會造成更廣泛的不良影響[8]。 基於上述考量,本聲明提出以下原則,納入G7 DPAs組織管理的核心方針[9]: 1. 以人為本的方法:G7 DPAs應透過資料保護來維護個人權利與自由,並在AI技術中提供以人權為核心的觀點。 2. 現有原則的適用:G7 DPAs應審視公平性、問責性、透明性和安全性等AI治理的核心原則,並確保其適用於AI相關框架。 3. AI核心要素的監督:G7 DPAs應從專業視角出發,監督AI的開發與運作,確保其符合負責任的標準,並有效保護個人資料。 4. 問題根源的因應:G7 DPAs應在AI的開發階段(上游)和應用階段(下游)找出問題,並在問題擴大影響前採取適當措施加以解決。 5. 善用經驗:G7 DPAs應充分利用其在資料領域的豐富經驗,謹慎且有效地應對AI相關挑戰。 二、《關於AI與兒童的聲明》 鑒於AI技術發展可能對於兒童和青少年產生重大影響,G7 DPAs發布本聲明表示,由於兒童和青少年的發展階段及其對於數位隱私的瞭解、生活經驗有限,DPAs應密切監控AI對兒童和青少年的資料保護、隱私權及自由可能造成的影響程度,並透過執法、制定適合年齡的設計實務守則,以及發佈面向兒童和青少年隱私權保護實務指南,以避免AI技術導致潛在侵害兒童和青少年隱私的行為[10]。 本聲明進一步闡述,當前及潛在侵害的風險包含[11]: 1. 基於AI的決策(AI-based decision making):因AI運用透明度不足,可能使兒童及其照顧者無法獲得充足資訊,以瞭解其可能造成重大影響的決策。 2. 操縱與欺騙(Manipulation and deception):AI工具可能具有操縱性、欺騙性或能夠危害使用者情緒狀態,促使個人採取可能危害自身利益的行動。例如導入AI的玩具可能使兒童難以分辨或質疑。 3. AI模型的訓練(Training of AI models):蒐集和使用兒童個人資料來訓練AI模型,包括從公開來源爬取或透過連線裝置擷取資料,可能對兒童的隱私權造成嚴重侵害。 三、《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》 考慮到個人資料匿名化、假名化及去識別化能促進資料的創新利用,有助於最大限度地減少隱私風險,本文件旨在整合G7成員國對於匿名化、假名化與去識別化的一致理解,針對必須降低可識別性的程度、資訊可用於識別個人的程度、減少可識別性的規定流程及技術、所產生的資訊是否被視為個人資料等要件進行整理,總結如下: 1. 去識別化(De-identification):加拿大擬議《消費者隱私保護法》(Consumer Privacy Protection Act, CPPA)、英國《2018年資料保護法》(Data Protection Act 2018, DPA)及美國《健康保險可攜性及責任法》(Health Insurance Portability and Accountability Act , HIPAA)均有去識別化相關規範。關於降低可識別性的程度,加拿大CPPA、英國DPA規定去識別化資料必須達到無法直接識別特定個人的程度;美國HIPAA則規定去識別化資料須達到無法直接或間接識別特定個人的程度。再者,關於資料去識別化的定性,加拿大CPPA、英國DPA認定去識別化資料仍被視為個人資料,然而美國HIPAA則認定去識別化資料不屬於個人資料範疇。由此可見,各國對去識別化規定仍存在顯著差異[12]。 2. 假名化(Pseudonymization):歐盟《一般資料保護規則》(General Data Protection Regulation, GDPR)及英國《一般資料保護規則》(UK GDPR)、日本《個人資料保護法》(個人情報の保護に関する法律)均有假名化相關規範。關於降低可識別性的程度,均要求假名化資料在不使用額外資訊的情況下,須達到無法直接識別特定個人的程度,但額外資訊應與假名化資料分開存放,並採取相應技術與組織措施,以確保無法重新識別特定個人,因此假名化資料仍被視為個人資料。而關於假名化程序,日本個資法明定應刪除或替換個人資料中可識別描述或符號,歐盟及英國GDPR雖未明定具體程序,但通常被認為採用類似程序[13]。 3. 匿名化(Anonymization):歐盟及英國GDPR、日本個資法及加拿大CPPA均有匿名化相關規範。關於降低可識別性的程度,均要求匿名化資料無法直接或間接識別特定個人,惟可識別性的門檻存在些微差異,如歐盟及英國GDPR要求考慮控管者或其他人「合理可能用於」識別個人的所有方式;日本個資法則規定匿名化資料之處理過程必須符合法規標準且不可逆轉。再者,上述法規均將匿名化資料視為非屬於個人資料,但仍禁止用於重新識別特定個人[14]。 參、事件評析 本次圓桌會議上發布《關於促進可信賴AI的資料保護機構角色的聲明》、《關於AI與兒童的聲明》,彰顯G7 DPAs在推動AI治理原則方面的企圖,強調在AI技術蓬勃發展的背景下,隱私保護與兒童權益應成為優先關注的議題。與此同時,我國在2024年7月15日預告《人工智慧基本法》草案,展現對AI治理的高度重視,融合美國鼓勵創新、歐盟保障人權的思維,針對AI技術的應用提出永續發展、人類自主、隱私保護、資訊安全、透明可解釋、公平不歧視、問責等七項原則,為國內AI產業與應用發展奠定穩固基礎。 此外,本次圓桌會議所發布《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》,揭示各國在降低可識別性相關用語定義及其在資料保護與隱私框架中的定位存在差異。隨著降低可識別性的方法與技術不斷創新,這一領域的監管挑戰日益突顯,也為跨境資料流動越發頻繁的國際環境提供了深化協調合作的契機。在全球日益關注資料保護與隱私的趨勢下,我國個人資料保護委員會籌備處於2024年12月20日公告《個人資料保護法》修正草案,要求民間業者設置個人資料保護長及稽核人員、強化事故通報義務,並針對高風險行業優先實施行政檢查等規定,以提升我國在數位時代的個資保護水準。 最後,本次圓桌會議尚訂定《2024/2025年行動計畫》(G7 Data Protection and Privacy Authorities’ Action Plan)[15],圍繞DFFT、新興技術與跨境執法合作三大議題,並持續推動相關工作。然而,該行動計畫更接近於一項「基於共識的宣言」,主要呼籲各國及相關機構持續努力,而非設定具有強制力或明確期限的成果目標。G7 DPAs如何應對數位社會中的資料隱私挑戰,並建立更順暢且可信的國際資料流通機制,將成為未來關注的焦點。在全球共同面臨AI快速發展所帶來的機遇與挑戰之際,我國更應持續關注國際趨勢,結合自身需求制訂相關法規以完善相關法制,並積極推動國際合作以確保國內產業發展銜接國際標準。 [1]Office of the Privacy Commissioner of Canada [OPC], G7 DPAs’ Communiqué: Privacy in the age of data (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/communique-g7_241011/ (last visited Feb 3, 2025). [2]Id. at para. 5. [3]Id. at para. 7-9. [4]Office of the Privacy Commissioner of Canada [OPC], Statement on the Role of Data Protection Authorities in Fostering Trustworthy AI (2024), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2024/s-d_g7_20241011_ai/ (last visited Feb 3, 2025). [5]Office of the Privacy Commissioner of Canada [OPC], Statement on AI and Children (2024), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2024/s-d_g7_20241011_child-ai/ (last visited Feb 3, 2025). [6]Office of the Privacy Commissioner of Canada [OPC], Reducing identifiability in cross-national perspective: Statutory and policy definitions for anonymization, pseudonymization, and de-identification in G7 jurisdictions (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/de-id_20241011/ (last visited Feb 3, 2025). [7]Office of the Privacy Commissioner of Canada [OPC], Statement on Generative AI (2023), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2023/s-d_20230621_g7/ (last visited Feb 3, 2025). [8]Supra note 4, at para. 11. [9]Supra note 4, at para. 18. [10]Supra note 5, at para. 5-6. [11]Supra note 5, at para. 7. [12]Supra note 6, at para. 11-15. [13]Supra note 6, at para. 16-19. [14]Supra note 6, at para. 20-25. [15]Office of the Privacy Commissioner of Canada [OPC], G7 Data Protection and Privacy Authorities’ Action Plan (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/ap-g7_241011/ (last visited Feb 3, 2025).