日本公布設立AI安全研究所與著手訂定AI安全性評鑑標準

日本於2023年12月1日舉辦G7數位技術委員會(G7デジタル・技術大臣会合),由日本數位廳、總務省、經濟產業省共同會晤G7會員國代表,基於人工智慧(Artificial Intelligence,下稱AI)可能帶給全球創造性、革命性的轉變,同時也可能伴隨侵害著作權與擴散假訊息的風險,尤其是生成式AI可能對經濟、社會影響甚鉅,因此針對如何妥善使用AI技術,G7全體會員國共同訂定《廣島AI進程》(広島AIプロセス)文件,其聲明內容簡述如下:

1.訂定涵蓋《廣島AI進程》之政策框架(Framework)

2.訂定涵蓋AI設計、系統開發、規劃、提供與使用等所有與AI有關人員,(All AI actors, when and as applicable, and appropriate, to cover the design, development, deployment, provision and use of advanced AI systems)適用之《廣島AI進程》國際標準(Principle)

3.針對開發高階AI系統之組織,訂定可適用之國際行為準則(Code of Conduct)

為此,日本內閣府於2024年2月14日公布,於經濟產業省政策執行機關—獨立行政法人資訊處理推動機構(独立行政法人情報処理推進機構,下稱IPA)轄下設立日本AI安全研究所(Japan AI Safety Institute,下稱AISI),作為今後研擬AI安全性評鑑標準(據以特定或減少AI整體風險)與推動方式之專責機構,以實現安心、安全以及可信賴之AI為目標。AISI所職掌的業務範圍如下:

1.進行AI安全性評鑑之相關調查

2.研擬AI相關標準

3.研擬安全性評鑑標準與實施方式

4.研擬與各國AI專責機關進行國際合作,例如:美國AI安全研究所(U.S. Artificial Intelligence Safety Institute, USAISI)

另一方面,IPA將以內部人才招聘作為AISI成員之任用方式,預計組成約數十人規模的團隊。日本以與G7會員國共識為基礎,採專責機關—AISI進行研究與規劃,並推動日後擬定AI相關使用規範與安全性評鑑標準,據以實現AI應用安全之目標。我國對於AI技術之應用領域,未來應如何訂定使用安全規範,將涉及專業性與技術性事項之整體性規劃,日本因應AI課題而採行的做法值得我國未來持續關注。

相關連結
※ 日本公布設立AI安全研究所與著手訂定AI安全性評鑑標準, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9157&no=0&tp=1 (最後瀏覽日:2025/11/21)
引註此篇文章
你可能還會想看
加拿大隱私專員辦公室針對聯邦廣播與電信修法提出隱私權與個資保護建議

  加拿大隱私專員辦公室(Office of the Privacy Commissioner of Canada, OPC)於2019年1月11日就其聯邦廣播通訊法(Radiocommunication Act, RA)與電信法(Telecommunications Act, TA)提出隱私權與個資保護建議。現行加拿大聯邦廣播通訊法針對個資保護並無特別立法,而其電信法第七條雖有提及要注重個資隱私,卻無實質責任規範。惟廣播與電信公司蒐集、處理及利用個資時,如何確保當事人之個資隱私受到保護,就此加拿大隱私專員辦公室提出三點修法建議。 一、電信法及廣播通訊法應包含哪些隱私安全與資訊安全之概念?   基於人民將大量敏感個資委託給電信業者,以獲得互聯網、電話及電視通信便利服務。惟個人資訊不但具有龐大商業價值,對於執法機關和情報安全機構也具有相當利益。基於以下因素,加拿大隱私專員辦公室建議制定電信業者更新之安全機制與公共安全義務。 保護措施 現行法規之保護措施應該適用於現代通訊工具,所有設備儲存與傳輸之敏感性個資都應受到保護,而非僅限於被使用之個人資訊。 門檻提升 數據蒐集之法律標準需加強,提升隱私保護。 保存期限要求 除法律特別規定之保存期限外,相關通訊數據保存應於最短時間內刪除,通盤完整保留數據為不必要之風險。 強制協助命令 強制監督 關於電信商既已存在之標準,監視與保留通訊之數據,依據政府要求提供者,政府須解釋其合理性。 透明度 除加拿大電信商提供年度報告,政府單位依據合法授權來請求加拿大客戶數據之情況下,應有相關報告以示公平。 二、政府管理政策與產業治理之有效性衡平   鑑於資訊技術與商業模式蒐集數據為不透明,普通消費者根本無從得知個人資訊是如何被取得及利用分享,當事人較難根據資訊來識別問題,亦難區別是否當事人是否為有效性之同意,故加拿大隱私專員辦公室認為其應該有權審核或檢查電信業者使用技術範圍內之事務,以確保現實情況與隱私法規範保護一致。故應使加拿大隱私專員辦公室能與其他聯邦監管機構(Canadian Radio-television and Telecommunications Commission, CRTC加拿大廣播電視和電信委員會與加拿大競爭局)共享資訊,並授予加拿大隱私專員辦公司發布命令與實施行政罰鍰之權力,且允許其進行積極之合規性審查。 三、立法設計中應包含消費者保護、權利行使及可及性   加拿大人民享受數位經濟帶來之好處,同時希望個人資訊之利用為無疑慮地,人民相信政府及立法機關會做好保護措施。惟目前加拿大之隱私立法仍為相當寬鬆,近期相關數據洩漏事件亦已證實電信公司無法善盡管理負責任,透明度與問責制度皆不足,相關消費者保護與權利行使皆須更完善,並需要更多資金進行改善。   加拿大個人資料保護和電子文件法(Personal Information Protection and Electronic Documents Act, PIPEDA)個資隱私法下,公司或組織於所提供服務相關時,可獲取、使用及共享資訊,但在提供服務之資訊外,尚有許多資訊共享於其他目的。電信公司蒐集日常生活資訊,針對敏感性個資,隱私法規範為明確的,但若個人數據非敏感性,則會帶來許多隱含空間,當事人是否為有意義之同意?加拿大隱私專員辦公室認為他們應該要有更多法律權力,透過執法確保電信數據生態系統之信任,並整合聯邦與省之法規。政府與業者創新使用數據皆能受到監管,於事件未發生時,則有前端監督其合規性,將使市場有明確性,且能向人民進一步保證其關注將獲得解決。

紐約通過法案,將禁止企業使用未能通過偏見審計的自動化招募系統

  紐約市議會於2021年11月10日通過紐約市行政法規的修正法案,未來將禁止雇主使用未通過偏見審計(bias audit)的「自動化聘僱決策工具(Automated Employment Decision Tools)」,避免因為自動化工具導致的偏見與歧視,不當反映於雇主的最終聘僱決策。   於該法所定義之「自動化聘僱決策工具」,係指透過機器學習、統計模型、數據分析或人工智慧之運算,以實質性協助或取代決策過程,影響最終聘僱決定。而聘僱決定包含篩選應徵者以及對員工作成是否晉升之結果。偏見審計由獨立審計員針對自動化聘僱決策工具進行測試,藉以評估該自動化聘僱決策工具對於雇主依法應申報資訊的影響,例如是否影響及如何影響員工性別、族裔、職位、職務等特徵分布情形。該法並規定雇主或職業介紹機構只有在滿足以下條件的前提下,始得使用自動化聘僱決策工具,包括: 一、通過審計義務:自動化聘僱決策工具須於1年之內通過偏見審計(bias audit)。在使用該工具前,應將該最新審計結果摘要及該工具發行日公告於雇主或職業介紹機構的網站上。除非另有規定,如未有公告,應徵者或員工得提出書面要求雇主於30日內提供自動化聘僱決策工具所收集的數據類型、來源及雇主或職業介紹機構之數據保留政策之相關資訊。 二、通知義務:如欲使用自動化聘僱決策工具對居住在紐約市的員工或應徵者進行評估時,雇主應於使用前的10個工作日內通知該員工或應徵者,且應通知用於評估時所使用之工作資格或特質等參數,並允許應徵者或員工申請以替代方式進行評估。   如雇主或職業介紹機構違反上開規定,第一次違反者將承擔500美元的民事懲罰(civil penalty),如連續違反者,對於之後的違反將承擔500至1500美元不等。目前該法案仍待市長簽署,該法案如經市長簽署通過,將於2023年1月1日生效。

IBM Watson Health與FDA合作研究區塊鏈技術之醫療運用

  根據專利資料庫公司IFI CLAIMS公佈2016年美國專利統計報告,IBM以8,088件專利再度蟬聯冠軍,其中多著重在人工智慧(artificial intelligence)、認知運算(cognitive computing)、及雲端(cloud)等技術領域,也有健康醫療相關專利。   近期IBM Health與美國食品藥品管理局(U.S. Food and Drug Administration)展開兩年期之合作研究,透過區塊鏈技術(blockchain)以安全且去中心化的方式進行數據共享,如:交換電子病歷、臨床試驗、基因數據、甚至過去難以取得的病患行動與穿戴裝置數據及物聯網(Internet of Things)數據等。   傳統上病患的病歷資訊存放於各診療單位或醫療機構,造成資訊管理效率及互通性較低,在區塊鏈技術的架構下,有效率的將大量且多樣的醫療數據進行彙整,並藉審查追蹤紀錄以防止竄改,提升病歷數據傳輸管理的可靠性及安全性。在如此多元化的醫療數據共享環境下,有助於醫療診斷、更將能促進產業發展。   此外,過去病患穿戴裝置所測得的日常生理數據,不管在數據取得、或將該些數據應用至臨床診斷上皆存有許多問題,如今區塊鏈技術將能提高物聯網數據資訊之整合性。依調查顯示,預計有80%新創組織採用區塊鏈技術於物聯網數據管理與應用上。   其他應用商機更包括居家監控、慢性疾病管理、藥物整合(medication reconciliation)及供應鏈管理等。IBM預估,至2017年底將會有16%的健康醫療機構採用以區塊鏈技術為架構的管理工具,並預測十年內採用比例將達72%。 本文同步刊登於TIPS網站(https://www.tips.org.tw)」

日本網路購物標價錯誤判決與臺、日實務差異之研究

TOP