日本於2023年12月1日舉辦G7數位技術委員會(G7デジタル・技術大臣会合),由日本數位廳、總務省、經濟產業省共同會晤G7會員國代表,基於人工智慧(Artificial Intelligence,下稱AI)可能帶給全球創造性、革命性的轉變,同時也可能伴隨侵害著作權與擴散假訊息的風險,尤其是生成式AI可能對經濟、社會影響甚鉅,因此針對如何妥善使用AI技術,G7全體會員國共同訂定《廣島AI進程》(広島AIプロセス)文件,其聲明內容簡述如下:
1.訂定涵蓋《廣島AI進程》之政策框架(Framework)
2.訂定涵蓋AI設計、系統開發、規劃、提供與使用等所有與AI有關人員,(All AI actors, when and as applicable, and appropriate, to cover the design, development, deployment, provision and use of advanced AI systems)適用之《廣島AI進程》國際標準(Principle)
3.針對開發高階AI系統之組織,訂定可適用之國際行為準則(Code of Conduct)
為此,日本內閣府於2024年2月14日公布,於經濟產業省政策執行機關—獨立行政法人資訊處理推動機構(独立行政法人情報処理推進機構,下稱IPA)轄下設立日本AI安全研究所(Japan AI Safety Institute,下稱AISI),作為今後研擬AI安全性評鑑標準(據以特定或減少AI整體風險)與推動方式之專責機構,以實現安心、安全以及可信賴之AI為目標。AISI所職掌的業務範圍如下:
1.進行AI安全性評鑑之相關調查
2.研擬AI相關標準
3.研擬安全性評鑑標準與實施方式
4.研擬與各國AI專責機關進行國際合作,例如:美國AI安全研究所(U.S. Artificial Intelligence Safety Institute, USAISI)
另一方面,IPA將以內部人才招聘作為AISI成員之任用方式,預計組成約數十人規模的團隊。日本以與G7會員國共識為基礎,採專責機關—AISI進行研究與規劃,並推動日後擬定AI相關使用規範與安全性評鑑標準,據以實現AI應用安全之目標。我國對於AI技術之應用領域,未來應如何訂定使用安全規範,將涉及專業性與技術性事項之整體性規劃,日本因應AI課題而採行的做法值得我國未來持續關注。
世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
藥品監管機構負責人組織與歐洲藥品管理局聯合巨量資料指導小組發布2021-2023年工作計畫,提高巨量資料於監管中之效用藥品監管機構負責人組織(Heads of Medicines Agencies, HMA)與歐洲藥品管理局(European Medicines Agency, EMA)聯合巨量資料指導小組(HMA-EMA joint Big Data Steering Group, BDSG)於2021年8月27日發布「巨量資料指導小組2021-2023年工作計畫」(Big Data Steering Group Workplan 2021-2023),將採以患者為焦點(patient-focused)之方法,將巨量資料整合至公衛、藥物開發與監管方法中,以提高巨量資料於監管中之效用。指導小組將利用「資料分析和真實世界訊問網路」(Data Analysis and Real World Interrogation Network, DARWIN EU)作為將真實世界資料整合至監管工作之關鍵手段; DARWIN EU諮詢委員會(Advisory Board)已於2021年建立,DARWIN EU協調中心(Coordination Centre)亦將於2022年初開始運作。 為確保資料品質與代表性,未來工作計畫將與「邁向歐洲健康資料空間–TEHDAS」(Towards A European Health Data Space – TEHDAS)合作,關注資料品質之技術與科學層面,並將於2022年提出第一版「歐洲監管網路資料品質框架」(data quality framework for the EU Regulatory Network)、「真實世界資料來源選擇標準」(criteria for the selection of RWD sources)、「詮釋資料優良規範指引」(metadata good practice guide)、「歐盟真實世界資料公用目錄」(public catalogue of European RWD)等規範。 此外,工作計畫將於2021年底舉辦「學習計劃」(learnings initiative)研討會,討論包括EMA人用藥品委員會(Committee for Medicinal Products for Human Use, CHMP)對於真實世界證據於藥品上市許可申請(Marketing Authorization Application, MAA)、適應症擴張(extensions of indications)之審查,以及過去真實世界資料分析試點於委員會之決策等議題,以利後續指引之修正。 最後,工作計畫預計於2021年底完成「健康照護資料二次使用之資料保護問與答文件」(question and answer document on data protection in the context of secondary use of healthcare data),以指導利益相關者與促進公共衛生研究,並發布由歐盟監管網路(EU Regulatory Network)同意之對於藥品監管(包括巨量資料)之資料標準化戰略。
日本2021年修正《個人資料保護法》,整合個資法體系日本於2021年5月19日公布新修正之《個人資料保護法》(個人情報の保護に関する法律),並預計於2022年4月正式施行。修法重點如下: 一、法律形式及法律管轄一元化:現行日本個人資料保護法制依適用對象分為《個人資料保護法》、《行政機關個人資料保護法》(法律行政機関の保有する個人情報の保護に関する法律)、《獨立行政法人等個人資料保護法》(独立行政法人等の保有する個人情報の保護に関する法律)及各地方政府個人資料保護條例等不同規範,修法後將統一適用《個人資料保護法》,並受到個人資料保護委員會之監督管理。 二、整合醫療及學術領域之規範:目前醫療及學術機構因隸屬於公部門或私部門適用不同規範,修法後無論公私立醫院、大學等原則上均適用相同規範。 三、調整學術研究之豁免規定:基於學術研究自由為憲法保障之基本權,現行《個人資料保護法》明文規定學術研究一律排除適用本法規定,惟2019年日本取得《歐盟一般資料保護規則》(GDPR)適足性認定之範圍未包含學術研究,故修法調整豁免規定為例外情形排除適用,如變更利用目的、取得敏感性個人資料及提供予第三者之情形。 四、整合個人資料及匿名化資料之定義:修法將公部門與私部門對個人資料之定義,整合為包含「易於」與其他資料比對後得以識別特定個人之要件。而《行政機關個人資料保護法》所稱「去識別化資料」(非識別加工情報),與《個人資料保護法》所稱「匿名化資料」(匿名加工情報),修法後將統一稱為「匿名化資料」。 為銜接上述修法內容,日本個人資料保護委員會自2021年8月起陸續針對《個人資料保護法施行令》、《個人資料保護法施行規則》及個人資料保護法相關指引公開徵求意見,後續值得持續觀察日本個人資料保護法制發展。
何謂「美國專利審理暨訴願委員會(PTAB)」?專利審理暨訴願委員會(Patent Trial and Appeal Board, PTAB)成立於2012年9月16號。其成立之法源為《美國發明法案》(Leahy-Smith America Invents Act, AIA),承接「專利訴願暨衝突委員會」(Board of Patent Appeals and Interferences, BPAI)事務,成為美國專利商標局(United States Patent and Trademark Office,USPTO)下轄職司專利審理與訴願等相關程序的組織。PTAB主要可以分成「專利審理部門」(Trials)和「專利訴願部門」(Appeals)。 「專利審理部門」處理有爭議的案件,囊括四種處理方式: 專利授予後複審(Post-Grant Review, PGR) 除了專利所有權人的任何人,可以在專利公告或發證後9個月內提出,惟之前不得就專利無效提出訴訟。無效理由只要一項請求不具專利性即可,不需要是實質新問題(Substantial New Questions, SNQ)。但不可匿名,需揭露實質利益關係人。 多方複審程序(Inter Partes Review, IPR) 在發證後9個月後才可提出,且必須是PGR終結後、提出確認之訴(Declaratory Judgment)之前、或被控侵權的1年內提出申請。且僅能以核准專利及公開文獻作為證據。 含商業方法專利的過渡性方案(Transitional Program for Covered Business Method Patents, CBM) 這是對所授予的商業方法專利的過渡型條款,將商業先使用抗辯(Prior Commercial Use Defense)擴大適用到所有專利的商業使用行為,不再侷限在方法專利。IPR、CBM類似於我國的舉發制度,只是 CBM 僅能就商業方法專利提出。 申請人/發明人調查程序(Derivation Proceedings) 以往發明人身分爭議多仍以訴訟解決,原因之一為,過去程序係釐清誰先想到該構想或實踐該構想而非釐清原創者為誰。申請人調查程序將俾利身分的釐清。 「專利訴願部門」則是由超過一百位專利行政法官(Administrative Patent Judges)所組成,處理與被駁回專利申請相關的訴願。按 35 U.S.C. § 141(a),訴願人可以就PTAB的訴願結果,向美國聯邦上訴法院(United States Court of Appeals for the Federal Circuit, CAFC)提起訴訟;後續,可就聯邦上訴法院之判決,再上訴至最高法院(Supreme Court)。