歐盟成員國就《網路團結法》(Cyber Solidarity Act)草案於2024年3月達成臨時協議,目的是為了加強歐盟的團結以及偵測、準備和因應網路安全威脅事件的能力。
歐盟執委會(European Commission)提案的主要目標如下:
(1)提供重大或大規模網路安全威脅事件的偵測和認識。
(2)強化準備、保護重要建設和必要服務。例如醫院和公共設施。
(3)加強歐盟的團結以及成員國之間有一致的危機管理與應變能力。
(4)最後,致力確保公民和企業皆有安全可靠的數位環境。
為了能快速且有效地偵測重大網路威脅,該法規草案建立了「網路安全警報系統」(cyber security alert system),這是一個由歐盟地區的國家和跨國界的網絡樞紐組成的泛歐洲基礎設施,將使用先進的資料分析技術以及時分享資訊,並警告有關跨境網路威脅的相關事件。
該草案亦建立網路緊急機制(cybersecurity emergency mechanism),以增強歐盟對網路安全事件應變的能力,它將包含:
(1)準備行動:包含根據常見的危機情境和方法,測試高度關鍵部門(highly critical sectors)(醫療保健、運輸、能源等)的潛在漏洞。
(2)歐盟網路預備隊:係由經過認證且事先簽約的私人供應商所組成,在歐盟成員國及機構的請求下,對於發生大規模的網路安全事件進行干預及回應。
(3)財政互助:一成員國可以向另一個成員國提供援助。
最後,因應委員會及各國家當局的要求,研議中的法規建立了網路安全事件審查機制,事後對已發生的大規模網路安全事件進行審查、評估、汲取經驗,並提出一份建議報告,從而改善歐盟網路的態勢,以加強歐盟對此些事件的應變能力。
歐盟成員國此次的協議將進一步提高歐洲網路韌性,期能強化歐盟及其成員國在面對大規模網路威脅和攻擊時,能以更有效率的方式進行事前準備、預防以及提升事後從中恢復的能力。
網路安全事件是各國都會遇到的課題,《網路團結法》的發展與相關推動措施值得我們持續追蹤,以作為我國資通安全管理及網路資安事件應變機制之參考方向。
.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 歐盟委員會於2024年10月17日通過了歐盟第2022/2555號《於歐盟實施高度共通程度之資安措施指令》(Directive (EU) 2022/2555 on measures for a high common level of cybersecurity across the Union,下稱NIS 2)的第一個實施條例(下稱「實施條例」)。NIS 2要求企業發生重大事件(Significant incident)後24小時內,應向會員國主管機關通報,依實施條例之規定,符合以下任一條件會被視為重大事件: 1. 造成超過50萬歐元或上一年度營業額5%以上的直接財務損失。 2. 造成商業機密洩漏。 3. 已造成或能造成自然人死亡。 4. 對自然人健康已造成或能造成大量傷害。 5. 疑似惡意且未經授權的存取網路和資訊系統造成嚴重運作中斷。 6. 反覆發生的事件。 7. 符合第5條至第14條特定資訊服務的事件。 實施條例主要在於補充上述條件的第6項及第7項。第6項規定於實施條例的第4條,定義「反覆發生」的要件,包含:(1)6個月內發生兩次;(2)有相同的根本原因;(3)大致符合超過50萬歐元或年營業額5%以上的直接財務損失。第7項則在實施條例的第5條至第14條列舉特定資訊服務提供者的重大事件條件,而其他資訊服務則包含DNS(domain name system)服務、TLD(top-level domain)網域註冊管理、雲端運算服務、資料中心服務、內容交換網路、託管服務、網路商城、搜尋引擎、社群網路服務、信託服務等,對於不同服務可能造成的影響各別列舉視為重大事件的條件。 歐盟委員會發布該實施條例確立何謂重大事件,並依歐盟考量資訊安全威脅所制定的NIS 2,將公共電子通訊網路或服務、會員國等進行連結,要求會員國設置資訊安全主管機關、危機管理機構、資訊安全聯絡點等義務,建立資訊安全通報機制,確保歐盟有整體的資訊安全戰略及框架,阻止潛在危機擴散。我國於2018年已制定《資通安全事件通報及應變辦法》並建立四級資通安全事件的標準,其標準以機敏或業務資訊遭洩漏對機密性的影響、資通系統遭竄改對完整性的影響,以及資通系統運作遭中斷對可用性的影響為依據,但並未對不同類型服務有制定更精細的定義。歐盟實施條例中有關重大事件之定義,可做為我國相關主管機關參考對象,研擬更準確的資通安全事件標準。
美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。
新加坡國家研究基金會推出AI.SG計畫,促進人工智慧技術發展新加坡國家研究基金會(National Research Foundation,以下簡稱NRF)於2017年5月3日宣布AI.SG倡議,並將啟動國家級AI計畫。NRF將於五年內投資新加坡幣1.5億元,整合NRF,智慧國家與數位政府辦公室(Smart Nation and Digital Government),經濟發展委會(Economic Development Board),資通訊媒體發展局(Infocomm Media Development Authority),新加坡創新機構(SGInnovate)及整合健康資訊系統(Integrated Health Information Systems)等數個政府部門,以及位於新加坡的研究機構、AI新創公司與發展AI產品的企業等共同投入。計畫三大目標如下: 利用人工智慧來解決影響社會和產業的重大挑戰 這些應用包括利用人工智慧解決交通尖峰時段壅塞問題,或應付人口老齡化帶來的醫療保健挑戰。IHiS執行長兼衛生部資訊長Mr.Bruce Liang表示:「醫療照護是需要高度知識及人性化的行業。多年來從新加坡在醫療照護數位化的發展中,可預見AI未來對於提升新加坡人民健康有很大幫助。例如在疾病預防、診斷、治療計畫、藥物治療、精準醫療、藥品開發等方面皆可發揮作用。醫護人員再加上AI工具,可以更完善解決未來對於醫療照護需求的增加。」 投入並深化技術能力,以掌握下一波科技創新 其中包括可展現更多人類學習能力的下一代「可解釋的人工智慧」 (Explainable Artificial Intelligence,XAI),以及相關技術,例如電腦系統架構(軟體、韌體、硬體整合)和認知科學(Cognitive Science)。NRF獎助金和研究計畫將會支持相關科學活動。當地人才也將透過參與AI深度功能的開發進行培訓。 擴大產業對於AI和機器學習的使用 AI.SG將與公司合作,利用AI來提高生產力,創造新產品,並輔導相關解決方案從實驗室進入市場。目標將支持100個AI研發項目和概念驗證,以利用戶能快速解決實際問題。並預計針對金融,醫療照護和城市管理解決方案領域具有特殊的潛力者先著手進行。 AI.SG計畫此項推動工作,未來不僅將可激發新加坡的研究人員和用戶利用AI解決社會重大問題,也將影響全世界渴望利用人工智慧技術帶來更便利的生活,值得我國相關機關推動政策之參考依據。
澳洲規劃研修「國家重型車輛法」並探討科技設備檢測疲勞駕駛相關規範澳洲國家交通委員會(National Transport Commission)與警覺、安全、生產力合作研究中心(Cooperative Research Centre for Alertness, Safety and Productivity ,Alertness CRC)於2016年12月攜手研究重型車輛駕駛員之疲勞駕駛影響,並特別探討科技設備檢測及因應的可行性,並著手研析重型車輛疲勞駕駛管理相關規範之評估規劃。 依據澳洲國家重型車輛法(Heavy Vehicle National Law,HVNL)規定,設有國家重型車輛管理獨立機構(The National Heavy Vehicle Regulator,NHVR)針對總重4.5噸之重型車輛進行規範監管。依國家重型車輛疲勞管理規則【Heavy Vehicle (Fatigue Management) National Regulation】規定針對1.超過12噸總重額(Gross Vehicle Mass,GVM)之重型車輛2. 車輛及聯結物超過12噸者3.超過4.5噸可乘載12名成人(包含司機)之巴士4.超過12噸總重額定值之卡車及聯結車,其附接工具或機械者,必須進行疲勞管制,其他對於有軌電車、工具機械車輛(例如:推土機、拖拉機)、露營車等則不在此管制對象。該法針對重型車輛工作和休息時間、工作及休息時間之紀錄、疲勞管理豁免(Fatigue management exemptions),及公司、負責人、合夥人、經理等的連帶責任,訂有相關規範。疲勞管理規則的規範核心在於駕駛員不能在疲勞的情況下行駛重型車輛,故即使符合工作和休息限制,駕駛員也可能因疲勞而受影響。 目前,因有限的證據表明工作安排對於重型車輛駕駛員疲勞的影響程度,亦很少有研究使用客觀和預測技術測量駕駛員的警覺性和疲勞,另對於駕駛員睡眠的質量和時間最低要求的資訊亦不足。因此,現行法律規範對重型車輛駕駛員疲勞的影響將受到挑戰。故警覺、安全、生產力合作研究中心將採取更精準的警報檢測方法和睡眠監測設備,進行相關研究測試,以作為未來國家重型車輛疲勞管理規則修訂之依據。 駕駛疲勞所引發的交通事故時有耳聞,往往造成重大危害與耗費社會成本。目前實務上已有利用科技設備偵測是否有疲勞駕駛情形,然而更重要的是,應落實行車前的疲勞管制,及相對應的解決方案,並加強公司及相關管理者之監督義務及連帶責任,才能有效降低疲勞駕駛肇事率,確保道路安全。