美國FTC認為政府擴大拜杜法權介入權適用範圍將引發專利叢林危機

美國聯邦貿易委員會(Federal Trade Commission, FTC)於2024年2月6日針對「介入權指引草案」(Draft Interagency Guidance Framework for Considering the Exercise of March-In Rights)提交意見書。介入權指引草案由美國國家標準技術研究院(National Institute of Standards and Technology, NIST)2023年12月8日公布於聯邦公報(Federal Register),旨在訂立政府機關發動《拜杜法》(Bayh-Dole Act)第203條「介入權」(March-in rights)之判斷流程與標準,以確保介入權發動具一致性。根據草案內容,當受政府補助之研發成果若經商業運用後被以「不合理價格」販售,而未滿足民眾健康與安全需求時,提供補助之政府機關應適時介入。

然而,介入權指引草案將「價格合理性」納入介入權發動要件,被美國各界質疑係為達成拜登政府打擊藥價之政策目的,亦即透過擴大、強化介入權之方式,將「受政府補助之專利藥」強制再授權專利,以降低藥品價格。

FTC於意見書中亦對此爭議提出看法,認為美國人民就處方藥須支付不斷上漲之昂貴價格,雖然賦予各機關審查「價格合理性」,將使得介入權發動更為廣泛且靈活,並得以監督藥品價格。惟擴大、強化介入權仍有隱患,尤其製藥公司恐為了保護其藥品專利,因此擴大申請專利權範圍導致專利叢林(patent thicket)現象產生,例如除將活性成分申請專利外,另將製程、劑型亦申請專利,此為未來各政府機關應該共同解決之問題。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 美國FTC認為政府擴大拜杜法權介入權適用範圍將引發專利叢林危機, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9185&no=64&tp=1 (最後瀏覽日:2025/12/02)
引註此篇文章
你可能還會想看
美國賓州眾議院通過《人工智慧生成內容揭露法》

美國賓州(Pennsylvania)眾議院於2024年4月10日通過《人工智慧生成內容的揭露法草案》(House Bill 1598 Disclosure of Artificially Intelligent Generated Content,下稱草案),規範AI生成內容及其利用行為以保護消費者。 草案規定,以AI生成之各種形式內容,在其首次呈現給消費者時應揭露資訊,使消費者知道該內容為AI生成之結果。如果明知或重大過失(Knowingly or recklessly)產出、散布或發布任何未「明確且顯著」(clear and conspicuous)揭露其內容為AI所生成者,即屬「不公平或欺騙性行為或做法」,將被依賓州《不公平貿易行為與消費者保護法》(Unfair Trade Practices And Consumer Protection Law)規定處罰。草案亦說明應如何揭露資訊,方符合條文所謂「明確且顯著」標準,例如針對AI生成之音訊內容,其揭露應以足夠的音量和節奏傳達,以便消費者聽取和理解。 此外,草案也關注兒童保護問題。鑑於AI生成的兒童性剝削圖像通報日益增加,草案最後新增規定,未來不能將「兒童性剝削圖像為AI生成」作為辯護理由,且檢察總長或地區檢察官可起訴製造、持有以及傳播AI生成之兒童色情或性虐待素材等相關行為。 目前草案已在州眾議院通過,由州參議院審議中。草案的提案議員強調,人們有權知道其消費的內容實際上是使用AI產出的成果,因此草案通過後,可望有效遏阻濫用AI的行為,提供賓州民眾更多的保障。

美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用

  在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。   美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論­­—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。   與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。   但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。

美國為加強聯邦補助生物科研之安全性而提出新規範

智慧聯網基礎設施與應用服務之法制建構-資訊安全與車聯網之例

TOP