英國發布《AI保證介紹》指引,藉由落實AI保證以降低AI系統使用風險

英國發布《AI保證介紹》指引,藉由落實AI保證以降低AI系統使用風險

資訊工業策進會科技法律研究所
2024年03月11日

人工智慧(AI)被稱作是第四次工業革命的核心,對於人們的生活形式和產業發展影響甚鉅。各國近年將AI列為重點發展的項目,陸續推動相關發展政策與規範,如歐盟《人工智慧法》(Artificial Intelligence Act, AI Act)、美國拜登總統簽署的第14110號行政命令「安全可靠且值得信賴的人工智慧開發暨使用」(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence)、英國「支持創新的人工智慧監管政策白皮書」(A Pro-innovation Approach to AI Regulation)(下稱AI政策白皮書)等,各國期望發展新興技術的同時,亦能確保AI使用的安全性與公平性。

壹、事件摘要

英國科學、創新與技術部(Department for Science, Innovation and Technology,DSIT)於2024年2月12日發布《AI保證介紹》(Introduction to AI assurance)指引(下稱AI保證指引),AI保證係用於評測AI系統風險與可信度的措施,於該指引說明實施AI保證之範圍、原則與步驟,目的係為讓主管機關藉由落實AI保證,以降低AI系統使用之風險,並期望提高公眾對AI的信任。

AI保證指引係基於英國政府2023年3月發布之AI政策白皮書提出的五項跨部會AI原則所制定,五項原則分別為:安全、資安與穩健性(Safety, Security and Robustness)、適當的透明性與可解釋性(Appropriate Transparency and Explainability)、公平性(Fairness)、問責與治理(Accountability and Governance)以及可挑戰性 與補救措施(Contestability and Redress)。

貳、重點說明

AI保證指引內容包含:AI保證之適用範圍、AI保證的三大原則、執行AI保證的六項措施、評測標準以及建構AI保證的五個步驟,以下將重點介紹上開所列之規範內容:

一、AI保證之適用範圍

(一)、訓練資料(Training data):係指研發階段用於訓練AI的資料。

(二)、AI模型(AI models):係指模型會透過輸入的資料來學習某些指令與功能,以幫助建構模模型分析、解釋、預測或制定決策的能力,例如GPT-4。,如GPT-4。

(三)、AI系統(AI systems):係利用AI模型幫助、解決問題的產品、工具、應用程式或設備的系統,可包含單一模型或多個模型於一個系統中。例如ChatGPT為一個AI系統,其使用的AI模型為GPT-4。

(四)、廣泛的AI使用(Broader operational context):係指AI系統於更為廣泛的領域或主管機關中部署、使用的情形。

二、AI保證的三大原則:鑒於AI系統的複雜性,須建立AI保證措施的原則與方法,以使其有效執行。

(一)、衡量(Measure):收集AI系統運行的相關統計資料,包含AI系統於不同環境中的性能、功能及潛在風險影響的資訊;以及存取與AI系統設計、管理的相關文件,以確保AI保證的有效執行。

(二)、評測(Evaluate):根據監管指引或國際標準,評測AI系統的風險與影響,找出AI系統的問題與漏洞。

(三)、溝通(Communicate):建立溝通機制,以確保主管機關間之交流,包含調查報告、AI系統的相關資料,以及與公眾的意見徵集,並將上開資訊作為主管機關監理決策之參考依據。

三、AI保證的六項措施:主管機關可依循以下措施評測、衡量AI系統的性能與安全性,以及其是否符合法律規範。

(一)、風險評估(Risk assessment):評測AI系統於研發與部署時的風險,包含偏見、資料保護和隱私風險、使用AI技術的風險,以及是否影響主管機關聲譽等問題。

(二)、演算法-影響評估(Algorithmic-impact assessment):用於預測AI系統、產品對於環境、人權、資料保護或其他結果更廣泛的影響。

(三)、偏差審計(Bias audit):用於評估演算法系統的輸入和輸出,以評估輸入的資料、決策系統、指令或產出結果是否具有不公平偏差。

(四)、合規性審計(Compliance audit):用於審查政策、法律及相關規定之遵循情形。

(五)、合規性評估(Conformity assessment):用於評估AI系統或產品上市前的性能、安全性與風險。

(六)、型式驗證(Formal verification):係指使用數學方法驗證AI系統是否滿足技術標準。

四、評測標準:以國際標準為基礎,建立、制定AI保證的共識與評測標準,評測標準應包含以下事項:

(一)、基本原則與術語(Foundational and terminological):提供共享的詞彙、術語、描述與定義,以建立各界對AI之共識。

(二)、介面與架構(Interface and architecture):定義系統之通用協調標準、格式,如互通性、基礎架構、資料管理之標準等。

(三)、衡量與測試方式(Measurement and test methods):提供評測AI系統的方法與標準,如資安標準、安全性。

(四)、流程、管理與治理(Process, management, and governance):制定明確之流程、規章與管理辦法等。

(五)、產品及性能要求(Product and performance requirements):設定具體的技術標準,確保AI產品與服務係符合規範,並透過設立安全與性能標準,以達到保護消費者與使用者之目標。

五、建構AI保證的步驟(Steps to build AI assurance)

(一)、考量現有的法律規範(Consider existing regulations):英國目前雖尚未針對AI制定的法律,但於AI研發、部署時仍會涉及相關法律,如英國《2018年資料保護法》(Data Protection Act 2018)等,故執行AI保證時應遵循、考量現有之法律規範。

(二)、提升主管機關的知識技能(Upskill within your organisation):主管機關應積極了解AI系統的相關知識,並預測該機關未來業務的需求。

(三)、檢視內部風險管理問題(Review internal governance and risk management):須適時的檢視主管機關內部的管理制度,機關於執行AI保證應以內部管理制度為基礎。

(四)、尋求新的監管指引(Look out for new regulatory guidance):未來主管機關將制定具體的行業指引,並規範各領域實踐AI的原則與監管措施。

(五)、考量並參與AI標準化(Consider involvement in AI standardisation):私人企業或主管機關應一同參與AI標準化的制定與協議,尤其中小企業,可與國際標準機構合作,並參訪AI標準中心(AI Standards Hubs),以取得、實施AI標準化的相關資訊與支援。

參、事件評析

AI保證指引係基於英國於2023年發布AI政策白皮書的五項跨部會原則所制定,冀望於主管機關落實AI保證,以降低AI系統使用之風險。AI保證係透過蒐集AI系統運行的相關資料,並根據國際標準與監管指引所制定之標準,以評測AI系統的安全性與其使用之相關影響風險。

隨著AI的快速進步及應用範疇持續擴大,於各領域皆日益重要,未來各國的不同領域之主管機關亦會持續制定、推出負責領域之AI相關政策框架與指引,引導各領域AI的開發、使用與佈署者能安全的使用AI。此外,應持續關注國際間推出的政策、指引或指引等,研析國際組織與各國的標準規範,借鏡國際間之推動作法,逐步建立我國的AI相關制度與規範,帶動我國智慧科技產業的穩定發展外,同時孕育AI新興產應用的發展並打造可信賴、安全的AI使用環境。

本文為「經濟部產業技術司科技專案成果」

※ 英國發布《AI保證介紹》指引,藉由落實AI保證以降低AI系統使用風險, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9187&no=64&tp=1 (最後瀏覽日:2026/01/08)
引註此篇文章
你可能還會想看
德國機器人和人工智慧研究

  人工智慧及機器人分為以下4種類型:首先是工廠裡的作業機器人,可自主性重複執行相同任務,例如拾取、放置、運輸物品,它們在侷限的環境中執行具體事務,而且通常是在周圍無人的圍籬區內作業,然而目前趨勢已有越來越多機器人可安全執行人機協作的任務。第二種係用在傳統製造外的專業機器人,例如:擠奶機器人、醫院手術機器人。第三種是生活中常見的消費產品機器人,常用於私人目的,例如:吸塵器機器人、割草機器人。最後是人工智慧軟體,此軟體可應用於醫療診斷輔助系統、語音助理系統中,目前越來越多人工智慧軟體結合復雜的感測器和聯網裝置,可執行較複雜之任務,例如:自動駕駛車。   德國人工智慧研究中心(Deutsche Forschungszentrum für Künstliche Intelligenz,DFKI)為非營利性公私合作夥伴(PPP)之研究機構,與歐盟,聯邦教育及研究部(BMBF)、德國聯邦經濟及能源部(BMWi),各邦和德國研究基金會(DFG)等共同致力於人工智慧之研究發展,轄下之機器人創新中心(Robotics Innovation Center,RIC)亦投入水下、太空、搜救、物流、製造業等各領域機器人之研究,未來將著重於研究成果的實際運用,以提升各領域之生產力。2016年6月,各界專家於德國聯邦議院的數位議程委員會中,呼籲立法者應注意機器人技術對經濟,勞動和社會的影響,包括技術及產品的安全標準、機器人應用之法律歸責問題、智慧財產權的歸屬與侵權問題,隱私權問題、及是否對機器人課稅等,進行相關修法監管準備。   解決台灣人口結構老化、勞動力短缺與產業競爭力等問題已是當務之急,政府為促進台灣產業轉型,欲透過智慧機械創新與物聯網技術,促使產業朝智慧化生產目標邁進。未來除需持續精進技術研發與導入產業業升級轉型外,應將人工智慧納入政策方針,並持續完備法制環境建構及提升軟實力,以確保我國技術發展得以跟上世界潮流。

何謂「專利蟑螂」( Patent Troll)呢?其之主要特徵及對專利制度以及專利市場之影響為何?

  「專利蟑螂」( Patent Troll)由個人或是中小型組織/團體以購買專利的方式來獲得專利權,並藉由專利權排他性特徵,以訴訟方式來控告侵害其專利權的成功商品製造者。   「專利蟑螂」主要特徵有三;(1)主要係藉由專利取得的方式,向潛在或可能的專利侵權者收取費用;(2)此類NPE並不進行任何研發活動,其亦不就其所擁有的專利來從事商品化活動或發展新型技術;(30此類NPE投機性地等待商品製造者在投入不可回復之鉅額投資後,始對該商品製造者行使專利侵權主張。   然而,一般對於NPE對專利制度以及專利市場之影響,會以Patent Troll之行為模式作為觀察起點,例如,有論者認為專利蟑螂所從事購買與再行出售專利的行為,可以增進專利交易市場的效率化。同時,該行為不僅讓弱勢的專利創作者享有因其創作所產生的財務收益外,其亦發揮了同於仲介者(dealers)或是市場創造者(market-makers)功能的專利金融性市場 。亦有論者認為,專利蟑螂的行為已經帶來經濟上的危害(economic harm),因其慣於同時向不同公司索取適度的(moderate)專利授權費用。而為了避免陷入風險極高且耗費甚鉅的專利侵權訴訟,被索取專利授權費用之公司皆傾向給付專利蟑螂一定額度的專利授權金,以免除陷入不確定專利訴訟的泥皁。同時,專利蟑螂亦傾向選擇目標公司(target companies)最脆弱的時點,例如:新產品的發表、宣傳費用的投入等,再對其提出專利侵權訴訟,使其被迫必須遵循專利蟑螂的要求來擺脫可能陷入專利侵權訴訟的羈絆。

日本內閣府公開徵集「研究安全和風險管理系統開發支援計畫」,加強研究安全保障

日本內閣府公開徵集「研究安全和風險管理系統開發支援計畫」,加強研究安全保障 資訊工業策進會科技法律研究所 2025年03月10日 壹、事件摘要 內閣府科學技術創新推進事務局(科学技術・イノベーション推進事務局),於2025年2月19日發布公告,自2025年2月19日至3月24日公開徵集國內負責經濟安全重要技術的補助機關和研究機構加入「研究安全和風險管理系統開發支援計畫」 [1](研究セキュリティ・インテグリティに関するリスクマネジメント体制整備支援事業,下簡稱研究安全計畫),以加強研究安全之保障。 貳、重點說明 日本曾發生研究者在不知情的情形下與北韓研究者共著論文而危害研究安全事件,根據日本經濟新聞2024年11月28日報導,自2016年底北韓受到聯合國加強制裁以來,共有八篇北韓研究機構的國際共著論文發表,包含東京大學、名古屋大學等日本五所大學的研究者皆在共同著作者之列,雖研究者皆表示與北韓無聯繫,但此行為仍可能違反聯合國制裁規定,且一名涉及本事件的研究者在論文發表後,仍被任命為國內主導研究計畫的主持人,負責百億日圓預算及先進技術的管理,顯示日本研究安全管理問題[2]。 為避免類似事件發生及提升日本科技實力,以及配合G7國家關於研究安全與誠信的政策,內閣府公開徵集負責經濟安全重要技術的補助機關和研究機構加入研究安全計畫。該計畫將蒐集與分析國際合作研究所需的公開資訊,並整合後於2025年出版「研究安全與誠信程序手冊」(RS/RI に関する手順書)。 所謂經濟安全重要技術,係指《促進特定重要技術研發及適當運用成果基本指南》(特定重要技術の研究開発の促進及びその成果の適切な活用に関する基本指針)所列,包含AI、生物技術等先進技術領域[3],內閣府將透過此計畫驗證學研機構所實施之研究安全與誠信措施是否得宜,並與學研機構分享典範實務,參考政府制定的研究安全與誠信規範,提出分析與改善方法。 研究安全計畫將支援日本國內研究機構和其他處理對經濟安全重要技術的機關,在國內外開展聯合研究時採取必要的技術外流防止措施,一方面提供分析資源,如協助分析研究人員及研究機構的公開資訊(職業經歷、其他工作以及研究資金流向等),另一方面支援實施風險管理的相關費用,並針對整體防止技術外流的風險控管體系進行評估後給予建議[4]。 研究安全計畫參與對象為補助研發之機關及領取補助進行研究開發的機構(如公立研究機構、研究開發公司、大學等),且應有足夠能力執行完整風險控管計畫。另計畫評選期間,研究機構不得有內閣府所定停止補助、停止推薦等情形[5]。 內閣府為結合國家政策與國際標準,全面提升日本在經濟安全重要技術領域的研究安全與誠信管理能力,透過分析與資金支援,協助研究機構構建完善的風險控管體系,確保研究中的技術外流防範措施得以落實。此舉不僅為日本科技實力的長期發展奠定基石,亦為維護國家經濟安全及國際信譽提供堅實保障。 參、事件評析 近年研究安全成為國際間之重要議題,為防止技術外流,各國亦有許多政策,如美國國家科學基金會(National Science Foundation, NSF)啟動「保護美國研究生態系統社群 」[6](Safeguarding the Entire Community of the U.S. Research Ecosystem, SECURE)計畫,並成立 SECURE 中心;加拿大政府公告「三機構關於敏感技術研究和關注從屬性政策指南」[7](Tri agency guidance on the Policy on Sensitive Technology Research and Affiliations of Concern, STRAC Policy)等,在如此趨勢下,日本亦開始注重研究安全之保障。 日本內閣府此次推動研究安全計畫,顯示日本政府已深刻意識到研究安全議題的迫切性與重要性。隨著全球科技競爭日益激烈,國際間的技術交流與合作頻繁,但也伴隨著技術外流、竊取敏感研究資訊等風險。尤其是北韓等受國際制裁國家,可能透過隱匿身分或間接合作的方式,取得敏感資訊,對國際社會的安全構成潛在威脅。 日本政府推動研究安全計畫,透過提供分析資源、資金支援及風險控管體系的評估建議,協助研究機構建立完善的防範機制,期望透過以上防範機制,全面提升日本在研究安全管理能力,並確保技術外流防範措施得以落實。 然而,此計畫的推動仍存在一些挑戰與考量。首先,如何在確保研究安全與維護學術自由之間取得平衡,避免過度限制造成研究自主性與創新能力的損害,將是重要課題。此外,背景審查與資訊分析機制的建置,需注意個人隱私保護,避免引發研究人員的反彈與抵制。再者,國際合作研究的審查程序若過於繁瑣,也可能影響日本研究機構與國際間的合作意願,甚至對國際學術地位造成負面影響。 因此,日本政府在推動此項政策時,應積極參考美國、加拿大等國的經驗,建立透明且具彈性的管理制度,並與國際夥伴保持密切溝通,協調一致的研究安全標準,避免孤立於國際科研社群之外。綜上所述,日本此次行動對於提升國內研究安全與誠信管理能力,並維護國家經濟安全,具有正面且積極的意義,未來仍需持續關注政策推行的成效與後續調整方向,以達成長期穩健的發展目標。 [1]〈研究セキュリティ・インテグリティに関するリスクマネジメント体制整備支援事業の公募について〉,內閣府,https://www8.cao.go.jp/cstp/kokusaiteki/integrity/kobo_r7.html (最後瀏覽日:2025/3/10)。 [2]日本経済新聞,〈東大など5大学、知らずに北朝鮮と共同研究 「寝耳に水」〉, 20254/11/28,https://www.nikkei.com/article/DGXZQOUE293WI0Z20C24A1000000/ (最後瀏覽日:2025/3/10)。 [3]〈特定重要技術の研究開発の促進及びその成果の適切な活用に関する基本指針〉,內閣府,https://www.cao.go.jp/keizai_anzen_hosho/suishinhou/doc/kihonshishin3.pdf (最後瀏覽日:2025/3/10)。 [4]〈研究セキュリティ・インテグリティに関するリスクマネジメント体制整備支援事業公募要領〉,內閣府,頁3,https://www8.cao.go.jp/cstp/kokusaiteki/integrity/kobo_r7/kobo_r7.pdf (最後瀏覽日:2025/3/10)。 [5]同前註,頁4。 [6]NSF-backed SECURE Center will support research security, international collaboration, US National Science Foundation, https://www.nsf.gov/news/nsf-backed-secure-center-will-support-research (last visited Mar. 10, 2025). [7]Tri-agency guidance on the Policy on Sensitive Technology Research and Affiliations of Concern (STRAC Policy), Natural Sciences and Engineering Research Council of Canada, https://www.nserc-crsng.gc.ca/InterAgency-Interorganismes/RS-SR/strac-rtsap_eng.asp (last visited Mar. 10, 2025).

美國商品期貨交易委員會發布《自願碳額度衍生性金融商品上市指引》,闡述交易所上架自願碳額度衍生性金融商品時所應考量之因素

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 美國商品期貨交易委員會(Commodity Futures Trading Commission, CFTC)於2024年10月15日發布《自願碳額度衍生性金融商品上市指引》(Commission Guidance Regarding the Listing of Voluntary Carbon Credit Derivative Contracts),闡述交易所上架自願碳額度衍生性金融商品時所應考量之因素,旨在推動仍處於發展階段的自願碳額度商品之標準化,以強化其透明度與流動性。本指引認為,決定進行上市交易前應先行考量下列因素: 1.透明度(Transparency):契約應公開碳額度方案(crediting program)與所認證減量專案活動之相關資訊。 2.外加性(Additionality):若無碳額度構成誘因,則其所代表之碳減量或移除將無從發生。 3.永久性與應對反轉風險(Permanence and Accounting for the Risk of Reversal):碳額度方案所核發之碳額度若遭撤銷,應具有充足緩衝儲備(buffer reserve)以替換品質相當之碳額度。 4.穩健量化(Robust Quantification):量化方法應穩健、保守且透明,以確保核發碳額度數量準確反映減排或移除量。 5.治理(Governance):碳額度方案應具備公開治理框架以建構獨立性、透明度及問責制度。 6.追蹤與避免重複計算(Tracking and No Double Counting):碳額度方案應追蹤碳額度之核發、轉讓及註銷,並確保已註銷額度不會再被使用而導致減排或移除量重複計算。 7.第三方確證及查證(Third-Party Validation and Verification):契約應明確記載第三方確證及查證程序,以確保碳額度實物交割符合品質要求,並與自願碳市場最新標準一致。

TOP