英格蘭、蘇格蘭、威爾斯政府,以及北愛爾蘭農業、環境和鄉村事務部於2024年5月23日共同提出「溫室氣體移除納入碳交易框架」(Integrating Greenhouse Gas Removals in the UK Emissions Trading Scheme)聯合諮詢文件,擬將「溫室氣體移除」(Greenhouse Gas Removals, GGRs)技術納入現行英國碳排放交易體系。GGRs係指主動將大氣中的溫室氣體移除之方法,又稱「二氧化碳移除」(Carbon Dioxide Removal, CDR)、「負碳技術」(Negative Emission Technologies, NETs),此類技術被認為能協助「難減排產業」減少排放。
此次意見徵集主要針對以下四大面向:
1.基本原則:將GGRs整合進UK ETS,須以維持減碳誘因、確保市場誠信、創造長期有效率的碳權交易市場、環境友善、具備可操作性、最小干預性、未來靈活性保障、考量財務影響等原則為基本前提。
2.總量管制:UK ETS於納入GGRs後,預計仍將維持當前總量上限,以避免實質上增加企業的排放容許量。
3.配額發給:GGRs能獲得的配額,擬採取「事後發給」的方式,於移除完成並經過驗證後,才發給配額,以維持交易市場的可信性。
4.市場整合:英國目前暫不考慮建立獨立的溫室氣體移除交易市場,擬將GGRs完全整合進既有的UK ETS中,並透過總量及需求控制或免費配額等措施調節市場供需,穩定並促進市場發展。
英國政府相信,透過將GGRs納入現行UK ETS中,可以增加企業對於碳移除之需求,提高負碳技術的投資誘因,進而持續對於淨零排放的目標有所貢獻。
2015年7月30日美國專利商標局大幅更新其於2014年12月所公布的專利標的適格性(patent subject matter eligibility)暫行準則。這次的更新主要是將各界對於2014年12月版暫行準則的意見納入,並包括了幾項新的適格性與不具適格性申請專利範圍的舉例。儘管有評論指出,美國專利商標局也正研議針對生物技術舉例,但此次所舉之例主要針對抽象概念而非生物技術發明。 這些舉例係對各種技術提供其他適格的申請專利範圍,以及適用最高法院與聯邦巡迴法院判斷具有其他元件的申請專利範圍是否與法定不予專利標的顯著不同的示例分析。這些例子與在審查人員的教育訓練資料中所載的判例法之判決先例,都將用於協助審查人員在評估申請專利範圍元件(claim element)的專利適格性上能夠彼此一致。 在更新的暫行準則的第三部份中,美國專利商標局為認定抽象概念提供了進一步資訊,其係有關最高法院及聯邦巡迴上訴法院對於抽象概念適格性判定的司法見解,包括人類活動的特定方法、基本經濟行為、概念本身及數學關係式/公式。 在更新的暫行準則的第五部分中,美國專利商標局解釋說,適格性的初步證據要求審查人員明確清楚地解釋為什麼無法對所提出的專利申請專利範圍授予專利(unpatentable),以便專利申請人獲得足夠的通知並可以有效地作出回應。 對於專利適格性,審查人有義務清楚地闡明所提出的專利申請不具有適格性的理由或原因,例如藉由提供判定申請專利範圍中所敘述的法定不予專利(judicial exception)與為什麼它被認定為例外的理由,以及在申請專利範圍中識別其他元件(additional element)的理由(若有的話),及解釋為何未與法定不予專利標的顯著不同。這裡由可以依據在該技術領域之人一般可得之知識、判例法之先例、申請人所揭露之資訊或證據。 美國專利商標辦公室表示,本次暫行準則歡迎各界給予意見,並至2015年10月28日止。
科技大廠被控剝削開放原始碼社群歐盟執委會( EC )一名資深官員 30 日大聲抨擊幾家美國的大型 IT 企業,指控他們對開放原始碼社群的發展產生過多影響。 EC 的資訊社會與媒體理事會軟體科技首長 Jesus Villasante 表示,如 IBM 、惠普( HP )和昇陽( Sun Microsystems )這些大公司,只是把開放原始碼社群當作承包商,而非鼓勵他們開發獨立的商業產品。 Villasante 在阿姆斯特丹舉行的荷蘭開放軟體大會( Holland Open Software Conference )中指出:「 IBM 會問顧客:你要專有或開放軟體?(如果他們選擇開放原始碼)然後他們會說:好,你要的是 IBM 的開放原始碼軟體。開放原始碼都將變成 IBM 、惠普或昇陽的財產。」 Villasante 說:「這些公司以承包商的模式,利用(開放原始碼)社群的潛能 – 當今的開放原始碼社群,等於是美國跨國企業的承包商。」他呼籲開放原始碼社群應發展更大的獨立性。 他表示:「開放原始碼社群需要看重自己,並瞭解他們對本身和社會都已作出貢獻。從他們瞭解自己是推動社會進化的一部分,並試圖發揮影響的那一刻起,我們才能朝正確的方向前進。」 Villasante 的看法令其他參與討論的成員頗為意外,包括 Sun One Consulting 的首席設計師 James Baty 。業界專家曾表示, IBM 等大公司對開放原始碼軟體的發展,作出相當大的貢獻,他們幫助說服企業與 IT 專業人員相信開放軟體與專有軟體一樣可靠。 Baty 並未直接回應 Villasante 的評論,但表示包括他的雇主在內的大型企業,都有責任奉獻給開放原始碼社群。昇陽捐助若干開放原始碼計劃,包括生產力應用軟體 OpenOffice.org 。 Baty 說:「有些公司僭取了開放原始碼社群的成果,其他公司則抱持他們必須奉獻的態度。(開放原始碼)應被視為一個機會,不是供人奪取和濫用的東西。」 Villasante 也利用稍早的演說,表達對歐洲軟體業的擔憂。他說:「我的看法是,歐洲目前根本沒有軟體產業 – 當今唯一的軟體產業只存在美國,未來或許還會出現在中國或印度。我們應該決定將來是否要建立歐洲的軟體產業。」 Villasante 認為開放原始碼是歐洲軟體產業發產的重要部分,但這種過程卻受到智慧財產遊說團體與傳統軟體業的壓力,及開放原始碼社群本身的分裂所壓抑。他說:「開放原始碼處於徹底的混亂 – 許多人作很多不同的東西。造成現在完全的混亂。」 一位聽眾指出, EC 也要為推動可能損害開放原始碼的軟體專利規章負責。 Villasante 回答,並非所有 EC 的成員都自動支持該規章。他說:「首先,我不負責軟體專利 – 軟體專利規章是由內部(市場)局長管理。資訊協會( Villasante 工作的單位)局長的意見,不一定與內部局長相同。」(陳智文)
日本公布設立AI安全研究所與著手訂定AI安全性評鑑標準日本於2023年12月1日舉辦G7數位技術委員會(G7デジタル・技術大臣会合),由日本數位廳、總務省、經濟產業省共同會晤G7會員國代表,基於人工智慧(Artificial Intelligence,下稱AI)可能帶給全球創造性、革命性的轉變,同時也可能伴隨侵害著作權與擴散假訊息的風險,尤其是生成式AI可能對經濟、社會影響甚鉅,因此針對如何妥善使用AI技術,G7全體會員國共同訂定《廣島AI進程》(広島AIプロセス)文件,其聲明內容簡述如下: 1.訂定涵蓋《廣島AI進程》之政策框架(Framework) 2.訂定涵蓋AI設計、系統開發、規劃、提供與使用等所有與AI有關人員,(All AI actors, when and as applicable, and appropriate, to cover the design, development, deployment, provision and use of advanced AI systems)適用之《廣島AI進程》國際標準(Principle) 3.針對開發高階AI系統之組織,訂定可適用之國際行為準則(Code of Conduct) 為此,日本內閣府於2024年2月14日公布,於經濟產業省政策執行機關—獨立行政法人資訊處理推動機構(独立行政法人情報処理推進機構,下稱IPA)轄下設立日本AI安全研究所(Japan AI Safety Institute,下稱AISI),作為今後研擬AI安全性評鑑標準(據以特定或減少AI整體風險)與推動方式之專責機構,以實現安心、安全以及可信賴之AI為目標。AISI所職掌的業務範圍如下: 1.進行AI安全性評鑑之相關調查 2.研擬AI相關標準 3.研擬安全性評鑑標準與實施方式 4.研擬與各國AI專責機關進行國際合作,例如:美國AI安全研究所(U.S. Artificial Intelligence Safety Institute, USAISI) 另一方面,IPA將以內部人才招聘作為AISI成員之任用方式,預計組成約數十人規模的團隊。日本以與G7會員國共識為基礎,採專責機關—AISI進行研究與規劃,並推動日後擬定AI相關使用規範與安全性評鑑標準,據以實現AI應用安全之目標。我國對於AI技術之應用領域,未來應如何訂定使用安全規範,將涉及專業性與技術性事項之整體性規劃,日本因應AI課題而採行的做法值得我國未來持續關注。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。